Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A Wireless Passive Sensing System for Displacement/Strain Measurement in Reinforced Concrete Members
Download
10.3390:s16040496.pdf
Date
2016-04-01
Author
Ozbey, Burak
ERTÜRK, VAKUR BEHÇET
DEMİR, Hilmi Volkan
ALTINTAŞ, AYHAN
Kurç, Özgür
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
156
views
144
downloads
Cite This
In this study, we show a wireless passive sensing system embedded in a reinforced concrete member successfully being employed for the measurement of relative displacement and strain in a simply supported beam experiment. The system utilizes electromagnetic coupling between the transceiver antenna located outside the beam, and the sensing probes placed on the reinforcing bar (rebar) surface inside the beam. The probes were designed in the form of a nested split-ring resonator, a metamaterial-based structure chosen for its compact size and high sensitivity/resolution, which is at mu m/microstrains level. Experiments were performed in both the elastic and plastic deformation cases of steel rebars, and the sensing system was demonstrated to acquire telemetric data in both cases. The wireless measurement results from multiple probes are compared with the data obtained from the strain gages, and an excellent agreement is observed. A discrete time measurement where the system records data at different force levels is also shown. Practical issues regarding the placement of the sensors and accurate recording of data are discussed. The proposed sensing technology is demonstrated to be a good candidate for wireless structural health monitoring (SHM) of reinforced concrete members by its high sensitivity and wide dynamic range.
Subject Keywords
Wireless passive sensors
,
Metamaterial based sensors
,
Structural health monitoring
,
Simply supported beam experiment
,
Elastic-plastic deformation of steel
,
Strain measurement
,
Displacement measurement
URI
https://hdl.handle.net/11511/42277
Journal
SENSORS
DOI
https://doi.org/10.3390/s16040496
Collections
Department of Civil Engineering, Article
Suggestions
OpenMETU
Core
An Electromagnetic Sensing System Incorporating Multiple Probes and Single Antenna for Wireless Structural Health Monitoring
Ozbey, Burak; ALTINTAŞ, AYHAN; DEMİR, Hilmi Volkan; ERTÜRK, VAKUR BEHÇET; Kurç, Özgür (2017-03-24)
In this study, a wireless and passive displacement/strain sensing system is proposed for structural health monitoring (SHM). The wireless and passive interrogation of the sensing unit [a variant of a nested split-ring resonator (NSRR)] is achieved through the near-field interaction and electromagnetic coupling between the single antenna in the system and the multiple sensors called the NSRR probes. It is demonstrated that the system can acquire data from more than one NSRR probe simultaneously in a real-lif...
A Wireless Metamaterial-Inspired Passive Rotation Sensor With Submilliradian Resolution
Gargari, Ali Maleki; Ozbey, Burak; DEMİR, Hilmi Volkan; ALTINTAŞ, AYHAN; Albostan, Utku; Kurç, Özgür; ERTÜRK, VAKUR BEHÇET (2018-06-01)
A novel passive wireless rotation sensing system with high levels of sensitivity and resolution is proposed and demonstrated for measuring elastic-region bending in materials such as steel. This system is composed of a transceiver antenna and a double-plate sensor in the form of an inter-digital configuration, which does not incorporate any active component. The sensor exhibits a large rotation resolution of 20 mu-rad, an excellent sensitivity of 28 MHz/degrees in average, and a large linear dynamic range o...
A PARYLENE BONDING BASED FABRICATION METHOD FOR GRAVIMETRIC RESONANT BASED MASS SENSORS
Gokce, Furkan; Aydın, Eren; Kangül, Mustafa; Toral, Taylan B.; Zorlu, Ozge; Sardan-Sukas, Ozlem; Külah, Haluk (2017-06-22)
In this study, a fabrication method utilizing parylene bonding for gravimetric resonant based mass sensors is presented. First, parylene bonding was experimentally tested and compared with the literature. Average shear strength was measured as 16.3 MPa (sigma=3MPa). Then, resonators located on top of a microchannel for real-time detection were fabricated using the presented method. Simulations and experiments verify proper operation of the fabricated resonators, and the applicability of the method for fabri...
A laterally resonating gravimetric sensor with uniform mass sensitivity and high linearity
Eroglu, D.; Bayraktar, E.; Külah, Haluk (2011-09-01)
In this paper, a laterally resonating gravimetric sensor with high linearity and uniform mass sensitivity is presented for biochemical sensor applications including rare-cell detection. The sensor utilizes symmetrically placed, balanced, folded spring beam structures to ensure lateral motion of the proof mass and limit the displacement difference between the proof mass center and edges. The dynamic mass sensitivity range of the resonator is increased by using the above mentioned properties of the resonators...
A New modal superposition method for nonlinear vibration analysis of structures using hybrid mode shapes
Ferhatoğlu, Erhan; Özgüven, Hasan Nevzat; Ciğeroğlu, Ender; Department of Mechanical Engineering (2017)
In this thesis, a new modal superposition method based on a hybrid mode shape concept is developed for the determination of steady state vibration response of nonlinear structures. The method is developed specifically for systems having nonlinearities where the stiffness of the system may take different limiting values. Stiffness variation of these nonlinear systems enables one to define different linear systems corresponding to each value of the limiting equivalent stiffness. Moreover, the response of the ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Ozbey, V. B. ERTÜRK, H. V. DEMİR, A. ALTINTAŞ, and Ö. Kurç, “A Wireless Passive Sensing System for Displacement/Strain Measurement in Reinforced Concrete Members,”
SENSORS
, pp. 0–0, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42277.