Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Simulated annealing for missile optimization: Developing method and formulation techniques
Date
2004-07-01
Author
Tekinalp, Ozan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
234
views
0
downloads
Cite This
Hide-and-seek is a continuous simulated annealing algorithm that uses an adaptive cooling schedule. A number of improvements are proposed for the global optimum estimation required for the cooling schedule. To handle equality constraints, two approaches are examined: the rejection method and augmentation of constraints to cost using penalty coefficients. It is demonstrated that a faster convergence is possible if, in the penalty coefficients approach, equality constraints are replaced with tight inequality constraints. The missile trajectory optimization problem is formulated using nodes equally spaced in time until burnout and equally spaced in energy consumption after burnout. This approach is shown to be superior to the use of all nodes equally spaced in time. Also investigated is the effect of node number on the performance of the algorithm. The problem of combined optimization of design and control variables is also addressed. For this purpose a two-loop approach, where each loop has its own temperature and cooling schedule, is proposed, and its effectiveness is demonstrated.
Subject Keywords
Control and Systems Engineering
,
Space and Planetary Science
,
Electrical and Electronic Engineering
,
Applied Mathematics
,
Aerospace Engineering
URI
https://hdl.handle.net/11511/42350
Journal
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS
DOI
https://doi.org/10.2514/1.2103
Collections
Department of Aerospace Engineering, Article
Suggestions
OpenMETU
Core
Aerodynamic optimization of turbomachinery cascades using Euler/boundary-layer coupled genetic algorithms
Oksuz, O; Akmandor, IS; Kavsaoglu, MS (American Institute of Aeronautics and Astronautics (AIAA), 2002-05-01)
A new methodology is developed to find the optimal aerodynamic performance of a turbine cascade. A boundary-layer coupled Euler algorithm and a genetic algorithm are linked within an automated optimization loop. The multiparameter objective function is based on the blade loading. For a given inlet Mach number and baseline cascade geometry, the flow inlet and exit angles, the blade thickness and the solidity are optimized by a robust genetic algorithm. First, the Sanz subcritical turbine cascade is selected ...
Non-parametric regional VTEC modeling with Multivariate Adaptive Regression B-Splines
Durmaz, Murat; Karslıoğlu, Mahmut Onur (Elsevier BV, 2011-11-01)
In this work Multivariate Adaptive Regression B-Splines (BMARS) is applied to regional spatio-temporal mapping of the Vertical Total Electron Content (VTEC) using ground based Global Positioning System (GPS) observations. BMARS is a non-parametric regression technique that utilizes compactly supported tensor product B-splines as basis functions, which are automatically obtained from the observations. The algorithm uses a scale-by-scale model building strategy that searches for B-splines at each scale fittin...
Approximate analytic solutions to non-symmetric stance trajectories of the passive Spring-Loaded Inverted Pendulum with damping
Saranlı, Uluç; Ankaralı, Mustafa Mert (Springer Science and Business Media LLC, 2010-12-01)
This paper introduces an accurate yet analytically simple approximation to the stance dynamics of the Spring-Loaded Inverted Pendulum (SLIP) model in the presence of non-negligible damping and non-symmetric stance trajectories. Since the SLIP model has long been established as an accurate descriptive model for running behaviors, its careful analysis is instrumental in the design of successful locomotion controllers. Unfortunately, none of the existing analytic methods in the literature explicitly take dampi...
Nonlinear dynamic analysis of a drivetrain composed of spur, helical and spiral bevel gears
Yavuz, Siar Deniz; Saribay, Zihni Burcay; Ciğeroğlu, Ender (Springer Science and Business Media LLC, 2020-06-01)
This paper proposes a dynamic model for the first time in order to investigate nonlinear time-varying dynamic behavior of a drivetrain including parallel axis gears (such as spur and helical gears) and intersecting axis gears (such as spiral bevel gears). Flexibilities of shafts and bearings are included in the dynamic model by the use of finite element modeling. Finite element models of shafts are coupled with each other by the mesh models of gear pairs including backlash nonlinearity and fluctuating mesh ...
Modelling and noise analysis of closed-loop capacitive sigma-delta mems accelerometer
Boğa, Biter; Külah, Haluk; Department of Electrical and Electronics Engineering (2009)
This thesis presents a detailed SIMULINK model for a conventional capacitive Σ-Δ accelerometer system consisting of a MEMS accelerometer, closed-loop readout electronics, and signal processing units (e.g. decimation filters). By using this model, it is possible to estimate the performance of the full accelerometer system including individual noise components, operation range, open loop sensitivity, scale factor, etc. The developed model has been verified through test results using a capacitive MEMS accelero...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. Tekinalp, “Simulated annealing for missile optimization: Developing method and formulation techniques,”
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS
, pp. 616–626, 2004, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42350.