Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Screening effect on the binding energies of shallow donors, acceptors and excitons in finite-barrier quantum wells
Date
1998-01-01
Author
Akbas, H
Aktas, S
Okan, SE
Ulas, M
Tomak, Mehmet
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
195
views
0
downloads
Cite This
The conduction and valence subband energies in the presence of an electric field are calculated using the fifth-order Runge-Kutta method. The binding energies of shallow donors, accepters and excitons in finite-barrier GaAs/Ga1-xAlx As quantum wells are then obtained variationally in the presence of a magnetic field. The effects of a spatially dependent screening function epsilon(r) On the calculation of binding energies are specifically investigated. The use of epsilon(r) in comparison with the use of a constant epsilon(0) increases the binding energy of accepters as the increase on shallow donors and excitons is quite small. (C) 1998 Academic Press Limited.
Subject Keywords
Electrical and Electronic Engineering
,
General Materials Science
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/42448
Journal
SUPERLATTICES AND MICROSTRUCTURES
DOI
https://doi.org/10.1006/spmi.1996.9993
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Subband structure and excitonic binding of graded GaAs/Ga1-xAlxAs quantum wells under an electric field
Sari, H; Ergun, Y; Elagoz, S; Kasapoglu, E; Sokmen, I; Tomak, Mehmet (Elsevier BV, 1998-01-01)
The effects of an applied electric field on subband energies and excitonic binding for a graded GaAlAs quantum well are calculated variationally within the effective mass approximation. The very sensitive dependence of subband energies on the applied field is calculated using a model potential profile and exact electron and hole wavefunctions. Our calculations have revealed the dependence of the energy shifts of subbands, and excitonic binding on the field direction in the graded quantum well. This permits ...
The electronic structure of a quantum well under an applied electric field
Sari, H; Ergun, Y; Sokmen, I; Tomak, Mehmet (Elsevier BV, 1996-01-01)
The effects of an applied electric field on quantum well subband energies are calculated variationally within the effective mass approximation for model potential profiles. The concept of a quasi-bound state is examined critically. For higher electric field values it is shown that the quasi-bound state approximation for the ground and first excited state of the electron, and for the ground state of the hole is valid. (C) 1996 Academic Press Limited
Temperature dependence of magnetic and thermal properties of chiral HyFe and HyMn close to phase transitions by using the Landau mean field model
Tari, Ozlem; Yurtseven, Hasan Hamit (Elsevier BV, 2019-04-15)
Magnetic and thermal properties of chiral metal formate frameworks (MOFs) of NH2NH3M(HCOO)(3), M = Fe, Mn, namely, HyFe and HyMn are investigated close to phase transitions by using Landau phenomenological model. By expanding the free energy in terms of the order parameter, for magnetic properties the temperature dependence of magnetization and inverse magnetic susceptibility, and for thermal properties the heat capacity and entropy are calculated for chiral HyFe and HyMn close to phase transitions using th...
Donor binding energies in GaAs quantum wells considering the band nonparabolicity effects and the wavefunction elongation
Aktas, S; Okan, SE; Erdogan, I; Akbas, H; Tomak, Mehmet (Elsevier BV, 2000-09-01)
The donor binding energies in finite GaAs/GaxAl1-As-x quantum wells have been calculated by considering the confinement of electrons, which increases as the well width increases. The variational solutions have been improved by using a two-parameter trial wavefunction, and by including the conduction band nonparabolicity. It is shown that the method used gives results in agreement with those obtained in the experiments on the effective mass and the donor binding energy, both of which are strongly dependent o...
Dispersive optical constants and temperature tuned band gap energy of Tl2InGaS4 layered crystals
Goksen, K.; Hasanlı, Nızamı; Ozkan, H. (IOP Publishing, 2007-06-27)
The optical properties of Tl2InGaS4 layered single crystals have been studied by means of transmission and reflection measurements in the wavelength range of 400-1100 nm. The analysis of the room temperature absorption data revealed the presence of both optical indirect and direct transitions with band gap energies of 2.35 and 2.54 eV, respectively. Transmission measurements carried out in the temperature range of 10-300 K revealed that the rate of change of the indirect band gap with temperature is gamma =...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. Akbas, S. Aktas, S. Okan, M. Ulas, and M. Tomak, “Screening effect on the binding energies of shallow donors, acceptors and excitons in finite-barrier quantum wells,”
SUPERLATTICES AND MICROSTRUCTURES
, pp. 113–119, 1998, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42448.