Gençer, Nevzat Güneri
Hardware and software for a dual modality imaging system is developed, and the system is applied to data obtained from phantoms. Static impedance tomographic images of translationally symmetric structures are reconstructed. For this purpose the positions of the electrodes placed around the cross section are determined by the ultrasonic time-of-flight measurements. The contrast resolution of the existing system is found to be 20% and the spatial resolution is about 10% of the average diameter of the cross section. In obtaining the impedance images, the 3-D nature of the data is taken into account by adapting a data conversion procedure.


A Digitally programmable application specific integrated circuit for drive and data acquisition of imaging sensorsMethod of moments analysis of slotted waveguide antenna arrays
Bayhan, Nusret; Akın, Tayfun; Eminoğlu, Selim; Department of Electrical and Electronics Engineering (2014)
This thesis explains the implementation of a digital programmable Application Specific Integrated Circuit (ASIC) designed for imaging applications. The primary function of this ASIC is to drive imaging sensors and to do basic processing on the digital video data coming from the sensors. The ASIC is designed to handle the communication between the imaging sensor and the system. Using command based high-level instructions, this two-way communication is simplified. The ASIC can also be used to store and update...
An Integrated imaging sensor for rare cell detection applications
Altıner, Çağlar; Akın, Tayfun; Eminoğlu, Selim; Department of Micro and Nanotechnology (2012)
Cell detection using image sensors is a novel and promising technique that can be used for diagnostic applications in medicine. For this purpose, cell detection studies with shadowing method are performed with yeast cells (Saccharomyces cerevisiae) using an 32×32 complementary metal oxide semiconductor (CMOS) image sensor that is sensitive to optical illumination. Cells that are placed zero distance from the sensor surface are detected using the image sensor which is illuminated with four fixed leds to main...
A Parametric Estimation Approach to Instantaneous Spectral Imaging
Öktem, Sevinç Figen; Davila, Joseph M (2014-12-01)
Spectral imaging, the simultaneous imaging and spectroscopy of a radiating scene, is a fundamental diagnostic technique in the physical sciences with widespread application. Due to the intrinsic limitation of two-dimensional (2D) detectors in capturing inherently three-dimensional (3D) data, spectral imaging techniques conventionally rely on a spatial or spectral scanning process, which renders them unsuitable for dynamic scenes. In this paper, we present a nonscanning (instantaneous) spectral imaging techn...
A Comparison of MWIR and LWIR Imaging Systems with regard to Range Performance
Turgut, Berk Berkan; Artan, Goktug Gencehan; Bek, Alpan (2018-04-18)
Range performance of an imaging system is a key factor for an infrared search and tracking system with a purpose of detection, recognition and identification. Therefore, the prediction of the expected range performance is of utmost importance. The range prediction includes many variables that affect the outcome. Wavelength is one of the most important parameters because it has an enormous effect on range, but detector technology directly related to range performance. In this study, MWIR and LWIR imaging sy...
Efficient calibration of a multi-camera measurement system using a target with known dynamics
Aykın, Murat Deniz; Saranlı, Afşar; Department of Electrical and Electronics Engineering (2008)
Multi camera measurement systems are widely used to extract information about the 3D configuration or “state” of one or more real world objects. Camera calibration is the process of pre-determining all the remaining optical and geometric parameters of the measurement system which are either static or slowly varying. For a single camera, this consist of the internal parameters of the camera device optics and construction while for a multiple camera system, it also includes the geometric positioning of the in...
Citation Formats
Y. IDER, E. DORKEN, N. G. Gençer, and H. KOYMEN, “A DUAL MODALITY IMAGING-SYSTEM FOR IMPEDANCE TOMOGRAPHY WITH ULTRASONICALLY DETERMINED BOUNDARIES,” 1989, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42478.