Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Magnetic monitoring approach to nanocrystallization kinetics in Fe-based bulk amorphous alloy
Date
2013-12-01
Author
Duman, Nagehan
Akdeniz, Mahmut Vedat
Mehrabov, Amdulla
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
204
views
0
downloads
Cite This
Much of the recent metallic glass research is devoted to controlling the crystallization of amorphous precursors with the purpose of obtaining amorphous matrix nanocrystalline alloys which combine unmatched soft magnetic properties with good mechanical properties. Therefore, it is crucial to have better understanding of crystallization mechanisms and thermal dependence of nanocrystals that are formed by annealing. This study deals with the nanociystallization kinetics of Cu-modified Fe-Co-Ni-B-Si-Nb bulk amorphous alloy using a non-conventional technique, i.e. isothermal magnetic monitoring, as applied to classical Johnson-Mehl-Avrami-Kolmogorov theory. The kinetic parameters determined via isothermal magnetic monitoring were compared with various non-isothermal approaches based on conventional thermal analysis where excellent agreement was obtained in local Avrami index and activation energy for nanocrystallization. Analyzing the local kinetics, alpha-(Fe,Co) nanocrystals were found to evolve through rather distinct regimes during annealing. The initial stage of crystallization is controlled by non-steady state diffusion field and transient nucleation effects, the intermediate stage is characterized by diffusion-controlled growth of crystals with negligible initial volume, and the late stage by suppressed growth kinetics due to soft-impingement diffusion and pile-up of solute atoms with slow diffusivity. Microstructural evolution of the nanocrystalline alpha-(Fe,Co) phase was examined by transmission electron microscopy and discussed according to the characteristics of distinct transformation regimes deduced from the kinetic analysis.
Subject Keywords
Nanocrystals
,
Thermal properties
,
Magnetic properties
,
Phase transformation
,
Glasses
,
Metallic
URI
https://hdl.handle.net/11511/42663
Journal
INTERMETALLICS
DOI
https://doi.org/10.1016/j.intermet.2013.07.021
Collections
Department of Metallurgical and Materials Engineering, Article
Suggestions
OpenMETU
Core
Magnetic monitoring approach to kinetics of phase transformations in multicomponent alloy systems
Duman, Nagehan; Mekhrabov, O. Mekhrabov; Akdeniz, Mahmut Vedat; Department of Metallurgical and Materials Engineering (2012)
It is of great importance for a materials scientist both from fundamental and applicability aspects to have better understanding of solid-state phase transformations and its kinetics responsible for micro-/nano-structure development in alloys and corresponding physical and mechanical properties. Transformation kinetics can be analyzed by various experimental techniques such as thermal analysis, laborious electron microscopy combined with extensive image analysis or by measuring changes in electrical resisti...
Properties of Al2O3: nc-Si nanostructures formed by implantation of silicon ions into sapphire and amorphous films of aluminum oxide
Tetelbaum, D. I.; Mikhaylov, A. N.; Belov, A. I.; Ershov, A. V.; Pitirimova, E. A.; Plankina, S. M.; Smirnov, V. N.; Kovalev, A. I.; Turan, Raşit; Yerci, Selçuk; Finstad, T. G.; FOSS, SEAN (2009-02-01)
Photoluminescence, infrared Fourier spectroscopy, Raman scattering, transmission electron microscopy, and electron diffraction were used to study the luminescent, optical, and structural properties of aluminum oxide layers (sapphire and films of Al2O3 deposited on silicon) implanted with Si+ to produce silicon nanocrystals. It is established that, in both cases, a high-temperature annealing of heavily implanted samples brings about the formation of silicon nanocrystals. However, the luminescent properties o...
Mechanical and optical properties of SiO2 thin films deposited on glass
Simurka, Lukas; Ctvrtlik, Radim; Tomastik, Jan; Bektaş, Gence; Svoboda, Jan; Bange, Klaus (2018-09-01)
The optical and mechanical properties of amorphous SiO2 films deposited on soda-lime silicate float glass by reactive RF magnetron sputtering at room temperature were investigated in dependence of the process pressure. The densities of the films are strongly influenced by the process pressure and vary between 2.38 and 1.91 g cm(-3) as the pressure changes from 0.27 to 1.33 Pa. The refractive indices of the films shift between 1.52 and 1.37, while the residual compressive stresses in the deposited films vary...
Mechanical, electrical and thermal properties of carbon fiber reinforced poly(dimethylsiloxane)/polypyrrole composites
Cakmak, G; Kucukyavuz, Z; Kucukyavuz, S; Cakmak, H (2004-01-01)
Conductive and flexible carbon fiber (CF) reinforced polydimethylsiloxane (PDMS)/polypyrrole (PPy) composites were synthesized electrochemically. Electrochemical synthesis was performed at + 1.1 V using p-toluenesulfonic acid as supporting electrolyte and water as solvent. Composites were characterized by thermal gravimetric analysis, scanning electron microscopy (SEM), conductivity measurements and mechanical tests. Conductivities of composites were observed in the range of 2.2-4 S/cm. SEM studies show tha...
Glass Forming Ability and Magnetic Properties of Fe36Ni36B19.2Si4.8Nb4-xMx (M = Cu, Zr, Ti, Y, Pt) Bulk Glassy Alloys Fabricated by Suction Casting
Kirimli, Handan Engin; Sarlar, Kagan; Konuk, A. Oguz; DUMAN, Nagehan; Akdeniz, Mahmut Vedat; Kucuk, Ilker (2013-05-01)
In this study, the effects of Cu, Zr, Ti, Y, Pt substitution for Nb additions on the stability and magnetic properties of Fe-Ni-based bulk metallic glass (BMG) alloys fabricated by the suction casting method are investigated. The saturation magnetization (J(s)) and coercivity (H-c) for as-cast Fe36Ni36B19.2Si4.8Nb4-xMx (M = Cu, Ti) BMG alloys were in the range of 0.51 T-0.55 T and 76-779 A/m, respectively. Differential scanning calorimetry curves show that the Fe36Ni36B19.2Si4.8Nb4-xMx (M = Cu, Ti) bulk met...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
N. Duman, M. V. Akdeniz, and A. Mehrabov, “Magnetic monitoring approach to nanocrystallization kinetics in Fe-based bulk amorphous alloy,”
INTERMETALLICS
, pp. 152–161, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42663.