On Crank-Nicolson Adams-Bashforth timestepping for approximate deconvolution models in two dimensions

2014-11-01
Kaya Merdan, Songül
Rebholz, Leo G.
We consider a Crank-Nicolson-Adams-Bashforth temporal discretization, together with a finite element spatial discretization, for efficiently computing solutions to approximate deconvolution models of incompressible flow in two dimensions. We prove a restriction on the timestep that will guarantee stability, and provide several numerical experiments that show the proposed method is very effective at finding accurate coarse mesh approximations for benchmark flow problems.
APPLIED MATHEMATICS AND COMPUTATION

Suggestions

On the stability at all times of linearly extrapolated BDF2 timestepping for multiphysics incompressible flow problems
AKBAŞ, MERAL; Kaya, Serap; Kaya Merdan, Songül (2017-07-01)
We prove long-time stability of linearly extrapolated BDF2 (BDF2LE) timestepping methods, together with finite element spatial discretizations, for incompressible Navier-Stokes equations (NSE) and related multiphysics problems. For the NSE, Boussinesq, and magnetohydrodynamics schemes, we prove unconditional long time L-2 stability, provided external forces (and sources) are uniformly bounded in time. We also provide numerical experiments to compare stability of BDF2LE to linearly extrapolated Crank-Nicolso...
On the Poisson sum formula for analysis of EM radiation/scattering from large finite arrays
Aydın Çivi, Hatice Özlem; Chou, HT (1998-01-01)
A useful procedure, that has been described previously in the literature, employs the Poisson sum formula to represent the solution to the fields of a three-dimensional (3D) large periodically spaced finite planar array problem configuration as a convolution of the infinite planar periodic array solution and the Fourier transform of the equivalent aperture distribution over the finite array. It is shown here that the Poisson sum formula utilized by Felsen and Carin (see J. Opt. Soc. Am. A, vol.11, no.4, p.1...
Numerical Solution of Multi-scale Electromagnetic Boundary Value Problems by Utilizing Transformation-Based Metamaterials
Ozgun, Ozlem; Kuzuoğlu, Mustafa (2011-06-23)
We present numerical solution techniques for efficiently handling multi-scale electromagnetic boundary value problems having fine geometrical details or features, by utilizing spatial coordinate transformations. The principle idea is to modify the computational domain of the finite methods (such as the finite element or finite difference methods) by suitably placing anisotropic metamaterial structures whose material parameters are obtained by coordinate transformations, and hence, to devise easier and effic...
On the Lagrange interpolation in multilevel fast multipole algorithm
Ergül, Özgür Salih (2006-07-14)
In this paper the Lagrange interpolation employed in the multilevel fast multipole algorithm (MLFMA) is considered as part of the efforts to obtain faster and more efficient solutions for large problems of computational electromagnetics. For the translation operator, this paper presents the choice of the parameters for optimal interpolation. Also, for the aggregation and disaggregation processes, the interpolation matrices are discussed and an efficient way of improving the accuracy by employing the poles a...
A note on the importance of mass conservation in long-time stability of Navier-Stokes simulations using finite elements
Belenli, Mine Akbas; Rebholz, Leo G.; Tone, Florentina (2015-07-01)
We prove a long-time stability result for the finite element in space, linear extrapolated Crank-Nicolson in time discretization of the Navier-Stokes equations (NSE). From this result and a numerical experiment, we show the importance of discrete mass conservation in long-time simulations of the NSE. That is, we show that using elements that strongly enforce mass conservation can provide significantly more accurate solutions over long times, compared to those that enforce it weakly.
Citation Formats
S. Kaya Merdan and L. G. Rebholz, “On Crank-Nicolson Adams-Bashforth timestepping for approximate deconvolution models in two dimensions,” APPLIED MATHEMATICS AND COMPUTATION, pp. 23–38, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42664.