Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
An ab initio study of dissociative adsorption of H-2 on FeTi surfaces
Date
2010-02-01
Author
Izanlou, A.
Aydınol, Mehmet Kadri
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
4
views
0
downloads
Dissociative adsorption of H-2 on clean FeTi (001), (110) and (111) surfaces is investigated via ab initio pseudopotential-plane wave method. Adsorption energies of H atom and H-2 molecule on Fe and Ti terminated (001) and (111) and FeTi (110) surfaces are calculated on high symmetry adsorption sites. It is shown that, top site is the most stable site for horizontal H-2 molecule adsorption on (001) and (111) surfaces for both terminations. The most favorable site for H atom adsorption on these surfaces however, is the bridge site. In (110) surface, the 3-fold hollow site which is composed of a long Ti-Ti bridge and an Fe atom, (Ti-Ti)(L)-Fe, and again a 3-fold hollow site this time composed of a short Ti-Ti bridge and an Fe atom, (Ti-Ti)(S)-Fe, are the most stable sites for H-2 and H adsorption, respectively. With the analysis of the above favorable adsorption sites, probable dissociation paths for H-2 molecule over these surfaces are proposed. Activation energies of these dissociations are also determined with the use of the dynamics of the H-2 relaxation and climbing image nudged elastic band method. It is found that H-2 dissociation on (110) and Fe terminated (111) surfaces has no activation energy barrier. On other surfaces however, activation energies are calculated to be 0.178 and 0.190 eV per H-2 molecule for Fe and Ti terminated (001) surfaces respectively, and 1.164 eV for Ti terminated (111) surface. (C) 2009 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.
Subject Keywords
FeTi
,
Hydrogen Storage
,
Dissociative Adsorption
,
Ab Initio Study
URI
https://hdl.handle.net/11511/42741
Journal
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
DOI
https://doi.org/10.1016/j.ijhydene.2009.12.136
Collections
Department of Metallurgical and Materials Engineering, Article