Automatic reconstruction of broken 3-D surface objects

1999-08-01
The problem of reconstruction of broken surface objects embedded in 3-D space is handled. A coordinate independent representation for the crack curves is developed. A new robust matching algorithm is proposed which serves for finding matching pieces even when some brittle pieces are missing. A prototype system having an X-based GUI has been developed. This system generates artifical wire-frame data of broken pieces (with some noise) for a pot-shaped 3-D object and then recombines it using the proposed algorithms.
COMPUTERS & GRAPHICS-UK

Suggestions

Non-destructive recognition of dielectric coated conducting objects by using WD type time-frequency transformation and PCA-based fusion
Sayan, Gönül (Wiley, 2013-07-01)
This article demonstrates the applications of a non-destructive electromagnetic target recognition method, called Wigner distribution-principal component analysis (WD-PCA) method, to dielectric coated conducting spheres. These spheres are chosen to be highly similar having the same overall size but slightly different permittivity and thickness values in coating layers. Four different classifiers are simulated by using the WD-PCA method for varying sizes of object libraries under different noise conditions. ...
3D indirect shape retrieval based on hand interaction
Irmak, Erdem Can; Sahillioğlu, Yusuf (Springer Science and Business Media LLC, 2020-01-01)
In this work, we present a novel 3D indirect shape analysis method which successfully retrieves 3D shapes based on hand-object interaction. To this end, the human hand information is first transferred to the virtual environment by the Leap Motion controller. Position-, angle- and intersection-based novel features of the hand and fingers are used for this part. In the guidance of these features that define the way humans grab objects, a support vector machine (SVM) classifier is trained. Experiments validate...
3D object recognition using scale space of curvatures
Akagündüz, Erdem; Ulusoy, İlkay; Department of Electrical and Electronics Engineering (2011)
In this thesis, a generic, scale and resolution invariant method to extract 3D features from 3D surfaces, is proposed. Features are extracted with their scale (metric size and resolution) from range images using scale-space of 3D surface curvatures. Different from previous scale-space approaches; connected components within the classified curvature scale-space are extracted as features. Furthermore, scales of features are extracted invariant of the metric size or the sampling of the range images. Geometric ...
Geometry-Aware Neighborhood Search for Learning Local Models for Image Superresolution
Ferreira, Julio Cesar; Vural, Elif; Guillemot, Christine (Institute of Electrical and Electronics Engineers (IEEE), 2016-03-01)
Local learning of sparse image models has proved to be very effective to solve inverse problems in many computer vision applications. To learn such models, the data samples are often clustered using the K-means algorithm with the Euclidean distance as a dissimilarity metric. However, the Euclidean distance may not always be a good dissimilarity measure for comparing data samples lying on a manifold. In this paper, we propose two algorithms for determining a local subset of training samples from which a good...
Transformation-based metamaterials to eliminate the staircasing error in the finite difference time domain method
Ozgun, Ozlem; Kuzuoğlu, Mustafa (Wiley, 2012-07-01)
A coordinate transformation technique is introduced for the finite difference time domain method to alleviate the effects of errors introduced by the staircasing approximation of curved geometries that do not conform to a Cartesian grid. An anisotropic metamaterial region, which is adapted to the Cartesian grid and designed by the coordinate transformation technique, is constructed around the curved boundary of the object, and the region occupied between the curved boundary and the inner boundary of the ani...
Citation Formats
G. Üçoluk and İ. H. Toroslu, “Automatic reconstruction of broken 3-D surface objects,” COMPUTERS & GRAPHICS-UK, pp. 573–582, 1999, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42748.