Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Application and Modeling of a Magnetic WSN for Target Localization
Date
2013-04-12
Author
Baghaee, Sajjad
GÜRBÜZ, SEVGİ ZÜBEYDE
Uysal, Elif
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
199
views
0
downloads
Cite This
The aim of this study is modeling ferromagnetic targets for localization and identification of such objects by a wireless sensor network (WSN). MICAz motes were used for setting up a wireless sensor network utilizing a centralized tree-based system. The detection and tracking of ferromagnetic objects is an important application of WSNs. This research focuses on analyzing the sensing limitations of magnetic sensors via tests conducted on small-scale targets which are moving within a 30 cm radius around the sensors. To detect target pres-ence and determine direction of motion, changes in magnetic field intensity are measured by the magnetic sensors. Target detection, identification and sequential localization (DISL) were accomplished using a minimum distance algorithm. The effect of environmental variations, such as temperature and power supply variations and magneticnoise, on DISL performance is examined based on experimental tests.
Subject Keywords
Wireless Sensor Network (WSN)
,
Magnetic Sensor
,
Identification
,
Localization
,
Sequential Localization
,
OMP
URI
https://hdl.handle.net/11511/46379
DOI
https://doi.org/10.1109/uksim.2013.54
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Implementation of an Enhanced Target Localization and Identification Algorithm on a Magnetic WSN
Baghaee, Sajjad; GÜRBÜZ, SEVGİ ZÜBEYDE; Uysal, Elif (2015-10-01)
Wireless sensor networks (WSNs) are ubiquitous in a wide range of applications requiring the monitoring of physical and environmental variables, such as target localization and identification. One of these applications is the sensing of ferromagnetic objects. In typical applications, the area to be monitored is typically large compared to the sensing radius of each magnetic sensor. On the other hand, the RF communication radii of WSN nodes are invariably larger than the sensing radii. This makes it economic...
Ferromagnetic Target Detection and Localization with a Wireless Sensor Network
Antepli, Mehmet Akif; Gurbuz, Sevgi Zubeyde; Uysal, Elif (2010-11-03)
This work attempts to address challenges of using magnetic sensors for target detection, localization and tracking with a wireless sensor network (WSN). A WSN comprised of magnetic sensors was constructed to investigate the modeling, detection, and localization of ferrous targets. The system was established as a centralized tree-based wireless network with a PC acting as the fusion center. A heavy cylindrical iron bar was used as a test target and modeled as a magnetic dipole. The magnetic signal models use...
Identification and localization on a wireless magnetic sensor network
Baghaee, Sajjad; Uysal Bıyıkoğlu, Elif; Gürbüz, Sevgi Zübeyde; Department of Electrical and Electronics Engineering (2012)
This study focused on using magnetic sensors for localization and identification of targets with a wireless sensor network (WSN). A wireless sensor network with MICAz motes was set up utilizing a centralized tree-based system. The MTS310, which is equipped with a 2-axis magnetic sensor was used as the sensor board on MICAz motes. The use of magnetic sensors in wireless sensor networks is a topic that has gained limited attention in comparison to that of other sensors. Research has generally focused on the d...
Exploiting energy-aware spatial correlation in wireless sensor networks
Shah, Ghalib A.; Bozyigit, Muslim (2007-01-12)
Wireless sensor networks (WSNs) promise fine-grain monitoring in a wide variety of applications, which require dense sensor nodes deployment. Due to high density of nodes, spatially redundant or correlated data is generated. Redundancy increases the reliability level of information delivery but increases the energy consumption of the nodes too. Since energy conservation is a key issue for WSNs, therefore, spatial correlation can be exploited to deactivate some of the nodes generating redundant information. ...
An Analysis for the Correlation of Coverage and Spatial Resolution for Wireless Sensor Networks
Tomur, Emrah; Erten, Y. Murat (2007-12-10)
In this study, we investigate the interactions between coverage and spatial resolution for cluster-based wireless sensor networks (WSN). We present an approximate probabilistic analysis for the mentioned correlation and verify this analysis by simulation. Our analysis includes the k-coverage case.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Baghaee, S. Z. GÜRBÜZ, and E. Uysal, “Application and Modeling of a Magnetic WSN for Target Localization,” 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46379.