Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Seismicity, focal mechanisms and active stress field around the central segment of the North Anatolian Fault in Turkey
Download
index.pdf
Date
2014-01-01
Author
Karasozen, E.
Özacar, Atilla Arda
Biryol, C. Berk
Beck, Susan L.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
130
views
0
downloads
Cite This
We analysed locations and focal mechanisms of events with magnitude >= 3, which are recorded by 39 broad-band seismic stations deployed during the North Anatolian Passive Seismic Experiment (2005-2008) around central segment of the North Anatolian Fault (NAF). Using P- and S-arrival times, earthquakes are relocated and a new 1-D seismic velocity model of the region is derived. Relocated events in the area are mainly limited to a depth of 15 km and present seismicity in the southern block indicates widespread continental deformation. In the next step, focal mechanisms are derived from first motions (P, SH) and amplitude ratios (SH/P) using a grid-search algorithm in an iterative scheme. Analysis of our well-constrained focal mechanisms indicate mainly strike-slip motions apart from some normal and few thrust events that are related to complex local fault geometry. Calculated pressure/tension axes are mainly subhorizontal and maximum horizontal stress directions (SH max) are oriented predominantly in NW-SE direction which corresponds well with the slip character of NAF and its splays. In the east, E-W trending splays show right-lateral strike-slip mechanisms similar to the main strand whereas in the west, antithetic N-S trending faults show left lateral strike-slip motions. The seismic cluster that converged near Corum after relocation indicates a dominant right-lateral strike-slip mechanism along the E-W trending fault. These focal mechanisms are used to perform stress tensor inversion across the region to map out the stress field in detail. Overall, maximum (sigma(1)) and minimum (sigma(3)) principal stresses are found to be subhorizontal and the intermediate principle stress (sigma(2)) is vertically orientated, consistent with a dominant strike-slip regime. These directions point to the clockwise rotation of stress trajectories from N to S where NW-SE directed sigma(1) in the north turns towards N-S in the south away from the NAF. Moreover, the 200-km-long Ezinepazar-Sungurlu Fault which is previously mapped as an active strike-slip fault is characterized by minor seismic activity and trends perpendicular to the computed maximum stress direction in the southwest away from the main strand of NAF suggesting that the Sungurlu segment is either compressional in nature or inactive.
Subject Keywords
Weather radar data
,
Satellite-based rainfall
,
Flood
,
WRF-Hydro model
URI
https://hdl.handle.net/11511/42979
Journal
GEOPHYSICAL JOURNAL INTERNATIONAL
DOI
https://doi.org/10.1093/gji/ggt367
Collections
Department of Geological Engineering, Article
Suggestions
OpenMETU
Core
Seismic Intensity Maps for the Eastern Part of the North Anatolian Fault Zone (Turkey) Based on Recorded and Simulated Ground-Motion Data
Askan, Aysegul; Karim Zadeh Naghshineh, Shaghayegh; Bilal, Mustafa (2017-01-01)
Seismic intensity maps are employed globally in the aftermaths of earthquakes for rapid response purposes. These maps involve correlations between intensity and peak ground-motion values. In this study, we focus on eastern sections of the North Anatolian fault zone (NAFZ). The eastern segments of the NAFZ are less investigated and have sparse seismic networks compared with western ones. In particular, we study Erzincan, which is a small city in eastern Turkey, located in the conjunction of three active faul...
Seismic hazard of Eastern Mediterranean region
Ertuğrul, Zehra (2010-12-01)
In the present study, probabilistic seismic hazard assessment was conducted for the Eastern Mediterranean region based on several new results: (1) a new comprehensive earthquake catalog, (2) seismic source models developed based on new geological, seismicity and geodetic data; and (3) new ground motion prediction equations (GMPEs). As the number of available regional ground motion records is not adequate to develop successful local GMPEs, the data in hand was employed for determining the most representative...
Seismic images of crustal variations beneath the East Anatolian Plateau (Turkey) from teleseismic receiver functions
Özacar, Atilla Arda; Gilbert, Hersh; Beck, Susan L. (2010-12-01)
We used teleseismic P-wave receiver functions recorded by the Eastern Turkey Seismic Experiment to determine the crustal structure across an active continent-continent collision zone. Moho depth and V-p/V-s variations in the region are mapped by incorporating crustal multiples and later two-dimsional (2-D) seismic profiles are produced using a common conversion point technique with our crustal V-p/V-s estimates. Moho depths do not correlate with surface topography and reveal a relatively thin crust consiste...
SEISMIC HAZARD ANALYSIS WITH RANDOMLY LOCATED SOURCES
Yücemen, Mehmet Semih (1994-03-01)
Demarcation of areal and linear seismic sources involves a certain degree of uncertainty and this should be reflected in the final seismic hazard results. The uncertainty associated with the description of the geographical coordinates of a source zone boundary is modeled by introducing the concept of 'random boundary', where the location of the boundary is assumed to exhibit a spatial bivariate Gaussian distribution. Here the mean vector denotes the best estimate of location and the variance reflects the ma...
Seismic hazard in the Istanbul Metropolitan Area: A preliminary re-evaluation
Kalkan, E.; Gulkan, P.; Ozturk, N. Yilmaz; Celebi, M. (2008-01-01)
In 1999, two destructive earthquakes (M7.4 Kocaeli and M7.2 Duzce) occurred in the north west of Turkey and resulted in major stress-drops on the western segment of the North Anatolian Fault system where it continues under the Marmara Sea. These undersea fault segments were recently explored using bathymetric and reflection surveys. These recent findings helped to reshape the seismotectonic environment of the Marmara basin, which is a perplexing tectonic domain. Based on collected new information, seismic h...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Karasozen, A. A. Özacar, C. B. Biryol, and S. L. Beck, “Seismicity, focal mechanisms and active stress field around the central segment of the North Anatolian Fault in Turkey,”
GEOPHYSICAL JOURNAL INTERNATIONAL
, pp. 405–421, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42979.