SEISMIC HAZARD ANALYSIS WITH RANDOMLY LOCATED SOURCES

1994-03-01
Demarcation of areal and linear seismic sources involves a certain degree of uncertainty and this should be reflected in the final seismic hazard results. The uncertainty associated with the description of the geographical coordinates of a source zone boundary is modeled by introducing the concept of 'random boundary', where the location of the boundary is assumed to exhibit a spatial bivariate Gaussian distribution. Here the mean vector denotes the best estimate of location and the variance reflects the magnitude of location uncertainty, which may be isotropic or may show spatial directivity. The consideration of spatial randomness in the boundaries smooths the seismicity parameters and permits the gradual transitions of these to occur across border zones. Seismic sources modeled as lines can also be attributed random geometrical properties.
NATURAL HAZARDS

Suggestions

Fault-based probabilistic seismic hazard assessment of the eastern Makran subduction and the Chaman transform fault, Pakistan: Emphasis on the source characterization of megathrust
Shah, Syed Tanvir; Özacar, Atilla Arda; Gülerce, Zeynep (Elsevier BV, 2021-01-01)
Seismic source characterization (SSC) for probabilistic seismic hazard assessment (PSHA) in regions characterized by subduction megathrust involves a considerable ambiguity. Lack of detailed geologic, seismic, and geodetic data increases the uncertainties. The enigma is enhanced in regions where thin-skinned accretionary prism faults are part of active deformation. In this study, a planar SSC model for seismically active eastern Makran subduction zone, its associated accretionary prism faults and Chaman tra...
Sensitivity of seismic hazard results to alternative seismic source and magnitude-recurrence models: a case study for Jordan
Yilmaz, Nazan; Yücemen, Mehmet Semih (2015-07-03)
Influence of different models and assumptions with respect to seismic source modelling and magnitude distribution on seismic hazard results is examined, taking Jordan as a case study. Four alternative models, which are based on different combinations of seismic source models and magnitude-recurrence relationships, are considered. Seismic hazard curves obtained at four different sites in Jordan according to these four models are compared. In order to display the magnitude of spatial variation of peak ground ...
Ground motion prediction equations based on simulated ground motions
Gür, Kader; Askan Gündoğan, Ayşegül; Kale, Özkan; Department of Earthquake Studies (2018)
Ground Motion Prediction Equations (GMPEs) are one of the key elements in seismic hazard assessment to estimate ground motion intensity measures by basically taking into account source, path and site effects. Most of the existing predictive models are derived from databases compiled from real (or observed) ground motion data. However, in data-poor regions, a novel practice to develop new GMPEs is to use simulated or hybrid ground motion datasets for performing reliable seismic hazard analysis. Simulations o...
TSUNAMI MAXIMUM RUNUP AND FOCUSING THROUGH EARTHQUAKE SOURCE PARAMETERS
Sharghivand, Naeimeh; Aşık, Mehmet Zülfü; Department of Engineering Sciences (2022-8-11)
In this study, the N-wave profile is fitted to the seafloor deformation for a large set of earthquake scenarios, i.e., assuming that the seafloor deformation resulting from an earthquake instantaneously transfers to the sea surface. Hence, the N-wave parameters are identified with respect to the earthquake source parameters allowing to express the initial tsunami profile in terms of the earthquake source parameters. Then, the maximum tsunami runup is presented through the earthquake fault plane parameters u...
Seismic hazard assessment for Cyprus
Cagnan, Zehra; TANIRCAN, GÜLÜM (Springer Science and Business Media LLC, 2010-04-01)
In the present study, probabilistic seismic hazard assessment was conducted for Cyprus based on several new results: a new comprehensive earthquake catalog, seismic source models based on new research, and new attenuation relationships. Peak ground acceleration distributions obtained for a return period of 475 years for rock conditions indicate high hazard along the southern coastline of Cyprus, where the expected ground motion is between 0.3 and 0.4 g. The rest of the island is characterized by values repr...
Citation Formats
M. S. Yücemen, “SEISMIC HAZARD ANALYSIS WITH RANDOMLY LOCATED SOURCES,” NATURAL HAZARDS, pp. 215–233, 1994, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/33290.