Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Communities & Collections
Communities & Collections
Effect of input size on the classification of lung nodules using convolutional neural networks Akciǧer nodüllerinin evrişimsel sinir aǧlari kullanilarak siniflandirilmasinda girdi boyutunun etkisi
Date
2018-05-05
Author
POLAT, Gorkem
Serinağaoğlu Doğrusöz, Yeşim
Halıcı, Uğur
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
2
views
0
downloads
Recent studies have shown that lung cancer screening using annual low-dose computed tomography (CT) reduces lung cancer mortality by 20% compared to traditional chest radiography. Therefore, CT lung screening has started to be used widely all across the world. However, analyzing these images is a serious burden for radiologists. The number of slices in a CT scan can be up to 600. Therefore, computer-aided-detection (CAD) systems are very important for faster and more accurate assessment of the data. In this study, we proposed a framework that analyzes CT lung screenings using convolutional neural networks (CNNs) to reduce false positives. We trained our model with different volume sizes and showed that volume size plays a critical role in the performance of the system. We also used different fusions in order to show their power and effect on the overall accuracy. 3D CNNs were preferred over 2D CNNs because 2D convolutional operations applied to 3D data could result in information loss. The proposed framework has been tested on the dataset provided by the LUNA16 Challenge and resulted in a sensitivity of 0.831 at 1 false positive per scan.
Subject Keywords
Lung nodule detection
,
Computed tomography
,
Convolutional neural networks
,
Deep learning
URI
https://hdl.handle.net/11511/42989
DOI
https://doi.org/10.1109/siu.2018.8404659
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar