WRF-Hydro Model Application in a Data-Scarce, Small and Topographically Steep Catchment in Samsun, Turkey

Ozkaya, Arzu
Akyürek, Sevda Zuhal
Floods due to heavy rainfall are one of the most frequent and widespread natural hazards. Rainfall is one of the key variables in flood modeling. For topographically steep catchments, flood modeling requires accurate rainfall sources in both time and space. The objective of this study is to compare different rainfall sources in physics-based distributed hydrologic model, (Weather Research and Forecasting) WRF-Hydro, in a data-scarce, small and topographically steep catchment. For this purpose, the model was calibrated and validated for the three catastrophic flood events that occurred in the Terme basin of eastern Black Sea region in Samsun, Turkey. The rainfall datasets include weather radar data and the Hydro-Estimator satellite rainfall product as nowcasting products, and WRF model precipitation data as a forecasting product and gauge-based data. Our results indicated that the tested rainfall products have different limitations and potentials depending on the rainfall process, so the accuracy of the results is greatly affected by the accuracy of rainfall products. Among the flood hydrographs, WRF precipitation data, bias-adjusted radar data and gauge data gave best Nash-Sutcliffe efficiency (NSE) results with calibrated parameters in simulations belonging to floods observed on November 22, 2014, August 2, 2015, and May, 28, 2016, respectively.


Assessment of different rainfall products in flood simulations
Özkaya, Arzu; Akyürek, Sevda Zuhal; Department of Civil Engineering (2017)
Floods happening due to heavy rainfall are one of the most widespread natural hazards. To predict such events, accurate rainfall products and well calibrated hydrologic models are essential especially in urban settlements for life savings. With the objective of assessing the rain detection potential of rainfall data products, several hourly rainfall datasets are used as forcing inputs in two hydrologic models. Physic based distributed model, WRF-Hydro, and conceptual based lumped model, HEC HMS, are used to...
Rainfall threshold to trigger landslides in unsaturated soils: A laboratory model study
Ahmadi-adli, Mohammad; Huvaj Sarıhan, Nejan; Toker, Nabi Kartal (2017-09-22)
Rainfall triggered landslides are common natural hazards with significant consequences all over the world. In this study, laboratory model tests are conducted which aims to obtain the rainfall intensity-duration threshold to trigger landslides in a slope composed of unsaturated soil in a flume setup. Sixteen laboratory model tests are conducted to obtain the rainfall intensityduration threshold. Some of the conclusions in this study are: (1) rainfall intensity-duration (I-D) thresholds that would trigger a ...
Evaluation of numerical weather prediction models for flash flood warnings in Turkey
Aksoy, Mehmet; Yücel, İsmail; Department of Civil Engineering (2020-10-15)
Flash floods are among the most destructive natural disasters in both Turkey and world that cause loss of life and property. In this study, monthly distribution of heavy rainfall events in the period of 2015-2019 is examined to show the frequency and distribution of flash floods associated with these heavy rainfall events in Turkey. The monthly distribution of lightning observations for the period of 2015 and 2019 is also studied to release the relationship between heavy rainfall events and lightning ...
Rainfall-triggered landslides in an unsaturated soil: a laboratory flume study
Ahmadi-Adli, Mohammad; Huvaj Sarıhan, Nejan; Toker, Nabi Kartal (2017-11-01)
Extreme and/or prolonged rainfall events frequently cause landslides in many parts of the world. In this study, infiltration of rainfall into an unsaturated soil slope and triggering of landslides is studied through laboratory model (flume) tests, with the goal of obtaining the triggering rainfall intensity-duration (I-D) threshold. Flume tests with fine sand at two different relative densities (34 and 48%) and at slope angle of 56.5 degrees are prepared, and rainfall (intensity in the range of 18 to 64 mm/...
Operation of the water control structures
Bozkurt, Okan Çağrı; Merzi, Nuri; Akyürek, Sevda Zuhal; Department of Civil Engineering (2013)
Floods are one of the most important natural disasters regarding damages caused by them. Major reasons of huge damages of floods are unplanned urbanization, narrowing of river beds and incorrect operation of water control structures. Geographic Information Systems (GIS) can provide important tools to be used in flood modeling studies. In this study, Lake Mogan, Lake Eymir and İncesu Detention Pond subbasins are studied for flooding events within GIS framework. These subbasins are important catchment areas o...
Citation Formats
A. Ozkaya and S. Z. Akyürek, “WRF-Hydro Model Application in a Data-Scarce, Small and Topographically Steep Catchment in Samsun, Turkey,” ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, pp. 3781–3798, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42991.