Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Influences of three different ethylene copolymers on the toughness and other properties of polylactide
Date
2016-01-01
Author
MEYVA, YELDA
Kaynak, Cevdet
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
3
views
0
downloads
The aim of this study was to investigate influences of three different ethylene copolymers on the toughness and other properties of very brittle biopolymer PLA (polylactide). For this aim, PLA was melt blended by twin-screw extruder with various amounts of ethylene vinyl acetate (EVA), ethylene-methyl-acrylate (EMA) and ethylene-n-butyl acrylate-glycidyl-methacrylate (EBA-GMA). SEM and DSC analyses indicated that these ethylene copolymers were thermodynamically immiscible with phase separation in the form of 1-5 mu m sized round domains in the PLA matrix. Rubber toughening mechanisms of EVA, EMA and EBA-GMA were very effective to improve ductility and toughness of PLA significantly. Depending on the type and content of the ethylene copolymers, the highest increases in % elongation at break, Charpy impact toughness and G(IC) fracture toughness values of PLA were as much as 160, 320 and 158%, respectively. Although there were no detrimental effects of using EVA, EMA and EBA-GMA on the thermal properties of PLA, they resulted in certain level of reductions in stiffness, strength and hardness values.
Subject Keywords
Materials Chemistry
,
General Chemical Engineering
,
Polymers and Plastics
,
Ceramics and Composites
URI
https://hdl.handle.net/11511/43019
Journal
PLASTICS RUBBER AND COMPOSITES
DOI
https://doi.org/10.1080/14658011.2016.1153821
Collections
Department of Metallurgical and Materials Engineering, Article