Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Influences of aminosilanization of halloysite nanotubes on the mechanical properties of polyamide-6 nanocomposites
Date
2014-07-01
Author
Erdogan, Ali Riza
Kaygusuz, Ilker
Kaynak, Cevdet
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
251
views
0
downloads
Cite This
The main purpose of this study was to explore effects of silanization of halloysite nanotubes (HNT) on the mechanical properties of polyamide 6 by using aminopropyltriethoxysilane. Effects of two silanization parameters; initial silane concentration and pH of reaction solution were also investigated. Nanocomposites were compounded via melt mixing method in a twin-screw extruder, while specimens were shaped by injection molding. Formation of aminosilane molecules on the edges and defected surfaces of HNTs were revealed mainly by Fourier-Transform infrared spectroscopy. Scanning electron microscopy and mechanical tests indicated that even the use of unmodified HNTs could be homogenously distributed in the matrix leading to increased mechanical properties as much as more than 30%. Aminosilanization of HNTs with optimum silanization parameters resulted in effective amounts of AlOSi bridging bonds between the matrix and reinforcement, making composite strengthening mechanisms more operative. In this condition, increases in the mechanical properties were as much as more than 50%. POLYM. COMPOS., 35:1350-1361, 2014. (c) 2013 Society of Plastics Engineers
Subject Keywords
Materials Chemistry
,
General Chemistry
,
Polymers and Plastics
,
Ceramics and Composites
URI
https://hdl.handle.net/11511/39277
Journal
POLYMER COMPOSITES
DOI
https://doi.org/10.1002/pc.22787
Collections
Department of Metallurgical and Materials Engineering, Article
Suggestions
OpenMETU
Core
Influences of three different ethylene copolymers on the toughness and other properties of polylactide
MEYVA, YELDA; Kaynak, Cevdet (Informa UK Limited, 2016-01-01)
The aim of this study was to investigate influences of three different ethylene copolymers on the toughness and other properties of very brittle biopolymer PLA (polylactide). For this aim, PLA was melt blended by twin-screw extruder with various amounts of ethylene vinyl acetate (EVA), ethylene-methyl-acrylate (EMA) and ethylene-n-butyl acrylate-glycidyl-methacrylate (EBA-GMA). SEM and DSC analyses indicated that these ethylene copolymers were thermodynamically immiscible with phase separation in the form o...
Influences of liquid elastomer additive on the behavior of short glass fiber reinforced epoxy
Arikan, A; Kaynak, Cevdet; Tincer, T (Wiley, 2002-10-01)
In this study, improvements in mechanical and thermal behavior of short glass fiber (GF) reinforced diglycidyl ether of bisphenol-A (DGEBA) based epoxy with hydroxyl terminated polybutadiene (HTPB) modification have been studied. A silane coupling agent (SCA) with a rubber reactive group was also used to improve the interfacial adhesion between glass fibers and an epoxy matrix. 10, 20, and 30 wt% GF reinforced composite specimens were prepared with and without silane coupling agent treatment of fibers and a...
Reactive extrusion of poly(ethylene terephthalate)-(ethylene/methyl acrylate/glycidyl methacrylate)-organoclay nanocomposites
Alyamac, Elif; Yılmazer, Ülkü (Wiley, 2007-04-01)
This study was conducted to investigate the effects of component concentrations and addition order of the components on the final properties of ternary nanocomposites composed of poly(ethylene terephthalate), organoclay, and an ethylene-methyl acrylate-glycidyl methacrylate (E-MA-GMA) terpolymer acting as an impact modifier for PET. In this context, first, the optimum amount of the impact modifier was determined by melt compounding binary PET-terpolymer blends in a corotating twin-screw extruder. The amount...
Effects of micro-nano titania contents and maleic anhydride compatibilization on the mechanical performance of polylactide
CAN, ULAŞ; Kaynak, Cevdet (Wiley, 2020-02-01)
The first aim of this study was to compare influences of various contents of the micro- (200 nm) and nano (50 nm)-sized titania (TiO2) particles especially on the mechanical performance of the polylactide (PLA) biopolymer. Micro- and nano-composites were prepared by twin-screw extruder melt mixing, while the specimens were shaped by compression molding. Scanning electron microscope analyses and mechanical tests revealed that due to the most efficient uniform distribution in the matrix, the best improvements...
Conducting copolymers of random and block copolymers of electroactive and liquid crystalline monomers with pyrrole and thiophene
Camurlu, Pinar; Toppare, Levent Kamil; Yilmaz, Faruk; Yagci, Yusuf; Galli, Giancarlo (Informa UK Limited, 2007-03-01)
Block and random copolymers having 3-methyl thienylmethacrylate and 6-(4-cyanobiphenyl-4'-oxy) hexyl acrylate moieties were utilized as precursor polymers in this study. Electrochemical copolymerizations were performed in the presence of thiophene or pyrrole in acetonitrile-tetrabutylammonium tetrafluoroborate (TBAFB) at constant potential. The characterizations were performed by cyclic voltammetry (CV), fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermal gravime...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. R. Erdogan, I. Kaygusuz, and C. Kaynak, “Influences of aminosilanization of halloysite nanotubes on the mechanical properties of polyamide-6 nanocomposites,”
POLYMER COMPOSITES
, pp. 1350–1361, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39277.