Critical Truck Loading Pattern to Maximize Live Load Effects in Skewed Integral Bridges

2014-05-01
An integral bridge (TB) is one in which the abutments are cast monolithically with the deck to form a rigid frame structure. When the geometry and conditions do not allow for designing straight IBs, skewed IBs (SIBs) are designed. Current bridge design specifications are mainly developed for regular jointed bridges. Thus, provisions for SIBs have not been included in these specifications yet. Consequently, to determine live load effects in SIB components, many practicing engineers built a three-dimensional (3D) finite element model (FEM). In this study, various multiple design truck loading patterns are investigated to determine the most critical loading pattern producing the maximum live load effects in SIB components. The results of the analyses reveal that in the case of SIBs, different truck loading patterns arise when compared to bridges with no skew. Trucks that are placed diagonally across the width of the bridge are observed to produce the most unfavorable live load effects in bridge components.
STRUCTURAL ENGINEERING INTERNATIONAL

Suggestions

Effects of Soil Bridge Interaction and Abutment Deck Continuity on the Live Load Distribution Factors in Integral Bridge Components
Erhan, Semih; Dicleli, Murat (2009-10-01)
In this study, the effects of soil bridge interaction and abutment deck continuity on the live load distribution in integral bridge components are studied. For this purpose, 2-D and 3-D structural models of typical integral and conventional bridges having various structural, geometric and geotechnical properties are built. The analyses of the models are then conducted under AASHTO live load. The analyses results revealed that soil-bridge interaction has significant effects on the live load distribution in a...
Test method for determining the shear modulus of elastomeric bearings
Topkaya, Cem (American Society of Civil Engineers (ASCE), 2002-06-01)
The shear modulus of the elastomer is the most important material property related to the behavior of elastomeric bearings used principally at supports in bridges. Current methods for determining the shear modulus usually require small test samples cut from manufactured bearings. Such tests are costly, do not necessarily represent the performance of the full-size bearing, and are destructive. A new shear test method, called the inclined compression test, is reported that is nondestructive and only requires ...
Experimental investigation of uplift on seismic base isolators /
Erkakan, Evren; Caner, Alp; Department of Civil Engineering (2014)
Elastomeric rubber bearings reinforced with steel shims, are used to provide structural support in vertical direction and allow horizontal movements for the structure subjected to earthquake and thermal loads. Generally, it is known that tensile stress or uplift may occur when the structure is subjected to strong ground motion or structure have large height-to-width aspect ratio to develop a stability concern subjected to lateral loads. The main focus of this research is to investigate the change in charact...
Low Cycle Fatigue Effects in Integral Bridge Steel H-Piles Under Earthquake Induced Strain Reversals
Dicleli, Murat (Springer, 2015-01-01)
Under the effect of medium and large intensity ground motions, the seismically-induced lateral cyclic displacements and ensuing bending strains in steel H-piles of integral bridges (IBs) could be considerable. As a result, the piles may experience cyclic plastic deformations following a major earthquake. This may result in the reduction of their service life due to low-cycle fatigue effects. Accordingly, low cycle fatigue in integral bridge piles is investigated under seismic effects in this study. For this...
Forced hydraulic jump on non-protruding rough beds
Tokyay, Nuray; Simsek, C. (2011-10-01)
Baffle blocks and sills are commonly used to stabilize the location of a hydraulic jump and shorten its length. However, corrugations or prismatic roughness elements may be effective alternatives to them. In the present study, experiments were performed to determine the effects of corrugations and prismatic roughness elements on fundamental characteristics of jump such as length, tailwater depth, and energy dissipation capacity. Corrugations were placed to cover the entire length of the basin. Prismatic rou...
Citation Formats
M. Dicleli, “Critical Truck Loading Pattern to Maximize Live Load Effects in Skewed Integral Bridges,” STRUCTURAL ENGINEERING INTERNATIONAL, pp. 265–274, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/43026.