Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Modified Superformula Contours Optimized via Genetic Algorithms for Fastly Converging 2D Solutions of EFIE
Date
2016-07-01
Author
Guler, Sadri
Onol, Can
Ergül, Özgür Salih
Hatipoglu, M. Enes
Sever, Emrah
Dikmen, Fatih
Tuchkin, Yury A.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
191
views
0
downloads
Cite This
It is known that solutions of the integral equations converge at the smoothness rate of the parametrical function representing the boundary contour. Thus using an infinitely smooth parametrical representation with derivatives of all orders results into exponentially converging solutions. A version of superformula tailored for this purpose is exposed to optimization of its parameters via genetic algorithms to obtain smooth parameterization for desired boundaries in two dimensional problems. The convergence of the resulting solutions of the electric-field integral equation will be presented.
Subject Keywords
Fast numerical convergence
,
Integral equations
,
Superformula
,
Genetic algorithms
URI
https://hdl.handle.net/11511/43035
DOI
https://doi.org/10.1109/aps.2016.7696374
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Modified Superformula Contours Optimized via Genetic Algorithms for Exponentially Converging 2D Solutions of MFIE
Guler, Sadri; Onol, Can; Ergül, Özgür Salih; Sever, Emrah; Dikmen, Fatih; Tuchkin, Yury A. (2017-05-25)
An infinitely smooth parametrical representation with derivatives of all orders is used, resulting into exponentially converging solutions of magnetic field integral equation (MFIE) in 2D either for TM or TE polarized excitations. A version of superformula modified for this purpose has been subject to optimization of its parameters via genetic algorithms to provide smooth parameterization for a desired boundary in two-dimensional problems. The organization of the MFIE kernel and convergence of the solution ...
On the accuracy of MFIE and CFIE in the solution of large electromagnetic scattering problems
Ergül, Özgür Salih (null; 2006-11-10)
We present the linear-linear (LL) basis functions to improve the accuracy of the magnetic-field integral equation (MFIE) and the combined-field integral equation (CFIE) for three-dimensional electromagnetic scattering problems involving large scatterers. MFIE and CFIE with the conventional Rao-Wilton-Glisson (RWG) basis functions are significantly inaccurate even for large and smooth geometries, such as a sphere, compared to the solutions by the electric-field integral equation (EFIE). By using the LL funct...
Improving the accuracy of the MFIE with the choice of basis functions
Ergül, Özgür Salih (2004-06-26)
In the method-of-moments (MOM) and the fast-multipole-method (FMM) solutions of the electromagnetic scattering problems modeled by arbitrary planar triangulations, the magnetic-field integral equation (MFIE) can be observed to give less accurate results compared to the electric-field integral equation (EFIE), if the current is expanded with the Rao-Wilton-Glisson (RWG) basis functions. The inaccuracy is more evident for problem geometries with sharp edges or tips. This paper shows that the accuracy of the M...
Linear-linear basis functions for MLFMA solutions of magnetic-field and combined-field integral equations
Ergül, Özgür Salih (2007-04-01)
We present the linear-linear (LL) basis functions to improve the accuracy of the magnetic-field integral equation (MFIE) and the combined-field integral equation (CFIE) for three-dimensional electromagnetic scattering problems involving closed conductors. We consider the solutions of relatively large scattering problems by employing the multilevel fast multipole algorithm. Accuracy problems of MFIE and CFIE arising from their implementations with the conventional Rao-Wilton-Glisson (RWG) basis functions can...
Improving the Accuracy of MFIE and CFIE by Using Numerically Designed Testing Functions
Karaosmanoglu, Bariscan; Ergül, Özgür Salih (2016-07-01)
We present a novel approach for improving the accuracy of the magnetic-field integral equation (MFIE) and the combined-field integral equation (CFIE) by using numerically designed testing functions. The compatibility of the MFIE and CFIE systems with the corresponding one derived from the electric-field integral equation (EFIE) is used to determine testing weights in given templates of testing directions. The designed testing functions lead to more accurate solutions in comparison to the standard discretiza...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Guler et al., “Modified Superformula Contours Optimized via Genetic Algorithms for Fastly Converging 2D Solutions of EFIE,” 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/43035.