Development of alumina supported ternary mixed matrix membranes for separation of H-2/light-alkane mixtures

Ternary component mixed matrix membrane was prepared from PES, SAPO-34 and 2-hydroxy 5-methyl aniline on a macroporous alumina disk by the solvent evaporation method in order to investigate the effect of existence of an inorganic support. The membrane and its pure PES/Alumina counterpart were characterized by single gas permeability measurements of H-2, CH4, C2H6 and C3H8. The corresponding H-2/CH4 selectivities of membranes were 71.3 and 41. The membranes were also used to separate equimolar mixtures of H-2 with CH4, C2H6 and C3H8 over a temperature range of 35-90 degrees C. The separation selectivities of ternary component membrane were 73.4 for H-2/CH4, 242.9 for H-2/C2H6 and > 1000 for H-2/C3H8 at 35 degrees C, which are comparable to the separation selectivities of pure PES on alumina. The permeances of all gases through PES/SAPO-34/HMA/Alumina membrane were, however, higher than those through PES/Alumina membrane at 90 degrees C. Despite its very complex morphology, the PES/SAPO-34/HMA/Alumina membrane preserved its structure and quality during the separation of different gas mixtures over temperature cycles between 35 and 90 degrees C. The CO2 and CH4 adsorption isotherms of PES-SAPO-34-HMA system were also obtained at 25 degrees C. The adsorption capacity of ternary component system was 1.55 mmol CO2/g and 0.45 mmol CH4/g, which is appreciably higher than the adsorption capacity of pure PES.


Effect of preparation parameters on the performance of conductive composite gas separation membranes
Gulsen, D; Hacarloglu, P; Toppare, Levent Kamil; Yılmaz, Levent (2001-02-15)
Mixed matrix composite membranes of a conducting polymer, polypyrrole (PPy), and an insulating polymer, polybisphenol-A-carbonate (PC) were prepared by a combined in-situ polymerization and solvent evaporation. Mixed matrix composite membranes were synthesized to combine the good gas transport properties of conductive polymer, PPy, with good mechanical properties of PC.
SUER, MG; BAC, N; Yılmaz, Levent (1994-05-20)
Mixed matrix membranes of polyethersulfone (PES), a glassy polymer, and hydrophilic zeolites 13X and 4A were prepared by using different membrane preparation procedures. Using selected procedure (c), the permeation rates of N2, O2, Ar, CO2 and H-2 were measured with a variety of membranes prepared at different zeolite loadings. Significant differences in measured permeability and calculated selectivity values demonstrated the importance of the type and percentage of zeolite. For both zeolitic additives, per...
Effect of feed gas composition on the separation of CO2/CH4 mixtures by PES-SAPO 34-HMA mixed matrix membranes
Cakal, Ulgen; Yılmaz, Levent; Kalıpçılar, Halil (2012-11-01)
The performance of zeolite and low molecular weight additive incorporated polyethersulfone (PES) membranes on the separation of CO2/CH4 mixtures at 35 degrees C was investigated. Four types of membranes, pure PES, PES/ 2-hydroxy 5-methyl aniline (HMA), PES/SAPO-34 and PES/SAPO-34/HMA, were prepared by solvent evaporation method. The CO2 concentration in the feed was varied between 5 and 70% by volume. PES/SAPO-34 membranes had a total permeability coefficient of 3 Barrer for an equimolar mixture, which was ...
Development of polybenzimidazole/graphene oxide composite membranes for high temperature PEM fuel cells
Uregen, Nurhan; Pehlivanoglu, Kubra; Ozdemir, Yagmur; DEVRİM, YILSER (2017-01-26)
In this study, phosphoric acid doped Polybenzimidazole/Graphene Oxide (PBI/GO) nano composite membranes were prepared by dispersion of various amounts of GO in PBI polymer matrix followed by phosphoric acid doping for high temperature proton exchange membrane fuel cell (HT-PEMFC) application. The structure of the PBI/GO composite membranes was investigated by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and by thermogravimetric analysis (TGA). The introduction of GO into the FBI polymer matri...
Investigation of phase inversion behavior of cellulose- ionic liquid solutions in relationship with membrane formation
Durmaz, Elif Nur; Çulfaz Emecen, Pınar Zeynep; Department of Chemical Engineering (2017)
Cellulose membranes were produced from ionic liquid solutions by phase inversion technique and thermodynamic and kinetic aspects of the process were investigated to relate these to membrane morphology and performance. In thermodynamics part, polymer-solvent, polymer-nonsolvent and polymer-solvent-nonsolvent interactions were examined experimentally, together with Hansen solubility parameter estimations. Kinetics part consisted of measuring phase inversion rate. Obtained membranes were characterized by their...
Citation Formats
B. Topuz, L. Yılmaz, and H. Kalıpçılar, “Development of alumina supported ternary mixed matrix membranes for separation of H-2/light-alkane mixtures,” JOURNAL OF MEMBRANE SCIENCE, pp. 725–733, 2012, Accessed: 00, 2020. [Online]. Available: