Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Separation of gas and organic/water mixtures by MFI type zeolite membranes synthesized in a flow system
Date
2010-01-01
Author
Soydas, Belma
Dede, Oezlem
Culfaz, Ali
Kalıpçılar, Halil
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
211
views
0
downloads
Cite This
MFI type zeolite membranes were synthesized in a recirculating flow system at 95 degrees C where the synthesis solution was flown over the tubular alpha-alumina supports. The performance of the membranes for the separation of binary gas mixtures and alcohol/water liquid mixtures was investigated. A membrane synthesized by two consecutive synthesis steps had a separation selectivity of 15 and 11 for equimolar mixtures of n-C4H10/CH4 and n-C4H10/N-2 at 200 degrees C, respectively. The membrane selectively permeated large nC(4)H(10) over small CH4 and N-2, suggesting that the separation is essentially adsorption-based and the membrane has few nonselective intercrystalline pores. The selectivities in the pervaporation separation of 5% ethanol/95% water mixture were 43 and 23 with permeate fluxes of 0.2 and 1.9 kg/m(2) h at 25 and 85 degrees C, respectively. The separation performance of membranes showed that MFI type membranes prepared in a recirculating flow system can be used both in the separation of gas and liquid mixtures.
Subject Keywords
General Materials Science
,
Mechanics of Materials
,
General Chemistry
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/43148
Journal
MICROPOROUS AND MESOPOROUS MATERIALS
DOI
https://doi.org/10.1016/j.micromeso.2009.07.004
Collections
Department of Chemical Engineering, Article
Suggestions
OpenMETU
Core
Preparation and characterization of zeolite framework stabilized cuprous oxide nanoparticles
Zahmakiran, Mehmet; Özkar, Saim (Elsevier BV, 2009-05-15)
Zeolite framework stabilized copper(I) oxide nanoparticles (4.8 +/- 2.6 nm) were prepared for the first time by using a four step procedure: the ion exchange of Cu(2+) ions with the extra framework Na(+) ions in Zeolite-Y, the reduction of the Cu(2+) ions within the cavities of zeolite with sodium borohydride in aqueous solution, the dehydration of Zeolite-Y with the copper(0) nanoclusters, and the oxidation of intrazeolite copper(0) nanoclusters by O(2) at room temperature. Zeolite stabilized copper(I) oxi...
Effect of gramicidin S on the dipalmitoylphosphatidyl-glycerol thermotropic phase transition in DPPG/GS systems: A mathematical approach
Stan, Cristina; Cristescu, C. P.; Severcan, Feride; Dorohoi, Dana (Informa UK Limited, 2006-01-01)
We present a mathematical approach to the experimental data recorded via Fourier transform-infrared spectroscopy regarding the influence of the concentration of the antimicrobial peptide gramicidin S (GS) on the thermotropic phase transition of the dipalmitoylphosphatidyl-glycerol (DPPG) lipid bilayer membrane in DPPG/GS systems. The model is based on the influence of the GS concentration on the parameters of a nonlinear damped oscillator, which models the CH2 symmetric stretching band.
Formation of TiB2 by volume combustion and mechanochemical process
Bilgi, Eda; ÇAMURLU, HASAN ERDEM; Akgun, Baris; Topkaya, Yavuz Ali; SEVİNÇ, NACİ (Elsevier BV, 2008-04-01)
Titanium diboride was produced both by volume combustion synthesis (VCS) and by mechanochemical synthesis (MCP) through the reaction of TiO2, B2O3 and Mg. VCS products, expected to be composed of TiB2 and MgO, were found to contain also side products such as Mg2TiO4, Mg3B2O6, MgB2 and TiN. HCl leaching was applied to the reaction products with the objective of removing MgO and the side products. Formation of TiN could be prevented by conducting the VCS under an argon atmosphere. Mg2TiO4 did not form when 40...
Synthesis and characterization of a new soluble conducting polymer and its electrochromic device
Varis, Serhat; Ak, Metin; Tanyeli, Cihangir; Akhmedov, Idris Mecidoglu; Toppare, Levent Kamil (Elsevier BV, 2006-12-01)
A mixture of isomers 2,5-di(4-methyl-thiophen-2-yl)-1-(4-nitrophenyl)-1H-pyrrole, 2-(4-methyl-thiophen-2-yl)-5-(3-methyl-thiophen-2-yl)1-(4-nitrophenyl)-1H-pyrrole and 2,5-di(3-methyl-thiophen-2-yl)-1-(4-nitrophenyl)-1H-pyrrole (Me-SNS(NO2)) were synthesized. Resulting monomers were polymerized chemically, producing soluble polymers in common organic solvents. The average molecular weight has been determined by gel permeation chromatography (GPC) as Mn = 5.6 x 10(3) for the chemically synthesized polymer. T...
Analysis of the Raman Frequency Shifts for the Lattice Modes and Vibrons Related to the Thermodynamic Quantities in the eta Phase of Solid Nitrogen
Yurtseven, Hasan Hamit (Walter de Gruyter GmbH, 2013-08-01)
The thermodynamic quantities of the isothermal compressibility, thermal expansion and the specific heat are calculated here as a function of pressure by using the observed Raman frequencies of the lattice modes and vibrons in the. phase of solid nitrogen. The Pippard relations and their spectroscopic modifications are constructed, and the slope dP/dT is deduced from the Raman frequency shifts in this phase of N-2. It is shown that the thermodynamic quantities can be predicted from the Raman frequency shifts...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Soydas, O. Dede, A. Culfaz, and H. Kalıpçılar, “Separation of gas and organic/water mixtures by MFI type zeolite membranes synthesized in a flow system,”
MICROPOROUS AND MESOPOROUS MATERIALS
, pp. 96–103, 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/43148.