Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Microstructural and magnetic characterization of iron precipitation in Ni-Fe-Al alloys
Date
2011-06-01
Author
DUMAN, Nagehan
Mehrabov, Amdulla
Akdeniz, Mahmut Vedat
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
2
views
0
downloads
The influence of annealing on the microstructural evolution and magnetic properties of Ni(50)Fe(x)Al(50-x) alloys for x=20, 25, and 30 has been investigated. Solidification microstructures of as-cast alloys reveal coarse grains of a single B2 type beta-phase and typical off eutectic microstructure consisting of proeutectic B2 type beta dendrites and interdendritic eutectic for x=20 and x>20 at.% Fe respectively. However, annealing at 1073 K results in the formation of FCC gamma-phase particles along the grain boundaries as well as grain interior in x=20 at.% Fe alloy. The volume fraction of interdentritic eutectic regions tend to decrease and their morphologies start to degenerate by forming FCC gamma-phase for x>20 at.% Fe alloys with increasing annealing temperatures. Increasing Fe content of alloys induce an enhancement in magnetization and a rise in the Curie transition temperature (T(C)). Temperature scan magnetic measurements and transmission electron microscopy reveal that a transient rise in the magnetization at temperatures well above the T(C) of the alloys would be attributed to the precipitation of a nano-scale ferromagnetic BCC alpha-Fe phase. Retained magnetization above the Curie transition temperature of alloy matrix, together with enhanced room temperature saturation magnetization of alloys annealed at favorable temperatures support the presence of ferromagnetic precipitates. These nano-scale precipitates are shown to induce significant precipitation hardening of the beta-phase in conjunction with enhanced room temperature saturation magnetization in particular when an annealing temperature of 673 K is used.
Subject Keywords
Mechanical Engineering
,
General Materials Science
,
Mechanics of Materials
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/43276
Journal
MATERIALS CHARACTERIZATION
DOI
https://doi.org/10.1016/j.matchar.2011.04.006
Collections
Department of Metallurgical and Materials Engineering, Article