Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Numerical analysis of laminar forced convection with temperature-dependent thermal conductivity of nanofluids and thermal dispersion
Date
2012-12-01
Author
Özerinç, Sezer
Kakac, S.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
221
views
0
downloads
Cite This
Nanofluids are promising heat transfer fluids due to their high thermal conductivity. In order to utilize nanofluids in practical applications, accurate prediction of forced convection heat transfer of nanofluids is necessary. In the first part of the present study, we consider the application of some classical correlations of forced convection heat transfer developed for the flow of pure fluids to the case of nanofluids by the use of nanofluid thermophysical properties. The results are compared with experimental data available in the literature, and it is shown that this approach underestimates the heat transfer enhancement. Furthermore, predictions of a recent correlation based on a thermal dispersion model are also examined, and good agreement with the experimental data is observed. The thermal dispersion model is further investigated through a single-phase, temperature-dependent thermal conductivity approach. Numerical analysis of hydrodynamically fully developed laminar forced convection of Al2O3(20 nm)/water nanofluid inside a circular tube under constant wall temperature and constant wall heat flux boundary conditions has been carried out. Results of the numerical solution are compared with the experimental data available in the literature. The results show that the single-phase assumption with temperature-dependent thermal conductivity and thermal dispersion is an accurate way of heat transfer enhancement analysis of nanofluids in convective heat transfer. (C) 2011 Elsevier Masson SAS. All rights reserved.
Subject Keywords
Nanofluids
,
Thermal dispersion
,
Laminar flow
,
Forced convection
,
Heat transfer enhancement
URI
https://hdl.handle.net/11511/43353
Journal
INTERNATIONAL JOURNAL OF THERMAL SCIENCES
DOI
https://doi.org/10.1016/j.ijthermalsci.2011.10.007
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
HEAT TRANSFER ENHANCEMENT IN LAMINAR CONVECTIVE HEAT TRANSFER WITH NANOFLUIDS
Özerinç, Sezer; YAZICIOGLU, A. G. (2011-06-03)
In order to utilize nanofluids in practical applications, accurate prediction of forced convection heat transfer of nanofluids is necessary. In the first part of the present study, we consider the application of some classical correlations of forced convection heat transfer developed for the flow of pure fluids to the case of nanofluids by the use of nanofluid thermophysical properties. The results are compared with experimental data available in the literature, and it is shown that this approach underestim...
Enhanced thermal conductivity of nanofluids: a state-of-the-art review
Özerinç, Sezer; Yazicioglu, Almila Guevenc (2010-02-01)
Adding small particles into a fluid in cooling and heating processes is one of the methods to increase the rate of heat transfer by convection between the fluid and the surface. In the past decade, a new class Of fluids called nanofluids, in which particles of size 1-100 nm with high thermal conductivity are Suspended in a conventional heat transfer base fluid, have been developed. It has been shown that nanofluids containing a small amount of metallic or nonmetallic particles, Such as Al2O3, CuO, Cu, SiO2,...
Performance analysis of grooved heat pipes using 3-D multi-channel thermal resistance network
Sezmen, Ramazan Aykut; Dursunkaya, Zafer; Çetin, Barbaros; Department of Mechanical Engineering (2021-9)
Heat pipes are phase change heat transfer devices that transfer high amounts of heat with low temperature differences compared to conventional cooling techniques due to their high thermal conductivity. Since heat pipes do not require any external power supply and not involve any moving parts, they are preferred for high reliability applications and in wide range of industrial applications from thermal management of electronics to space applications. Essentially, heat pipes use the advantage of occurring pha...
NUMERICAL ANALYSIS OF CONVECTIVE HEAT TRANSFER OF NANOFLUIDS FOR LAMINAR FLOW IN A CIRCULAR TUBE
Kirez, Oguz; Güvenç Yazıcıoğlu, Almıla; KAKAÇ, SADIK (2012-11-15)
In this study, a numerical analysis of heat transfer enhancement of Alumina/water nanofluid in a steady-state, single-phase, laminar flow in a circular duct is presented for the case of constant wall heat flux and constant wall temperature boundary conditions. The analysis is performed with a newly suggested model (Corcione) for effective thermal conductivity and viscosity, which show the effects of temperature and nanoparticle diameter. The results for Nusselt number and heat transfer enhancement are prese...
Numerical Simulation of Reciprocating Flow Forced Convection in Two-Dimensional Channels
Sert, Cüneyt (ASME International, 2003-5-20)
<jats:p>Numerical simulations of laminar, forced convection heat transfer for reciprocating, two-dimensional channel flows are performed as a function of the penetration length, Womersley (α) and Prandtl (Pr) numbers. The numerical algorithm is based on a spectral element formulation, which enables high-order spatial resolution with exponential decay of discretization errors, and second-order time-accuracy. Uniform heat flux and constant temperature boundary conditions are imposed on certain regions of the ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Özerinç and S. Kakac, “Numerical analysis of laminar forced convection with temperature-dependent thermal conductivity of nanofluids and thermal dispersion,”
INTERNATIONAL JOURNAL OF THERMAL SCIENCES
, pp. 138–148, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/43353.