NUMERICAL ANALYSIS OF CONVECTIVE HEAT TRANSFER OF NANOFLUIDS FOR LAMINAR FLOW IN A CIRCULAR TUBE

2012-11-15
Kirez, Oguz
Güvenç Yazıcıoğlu, Almıla
KAKAÇ, SADIK
In this study, a numerical analysis of heat transfer enhancement of Alumina/water nanofluid in a steady-state, single-phase, laminar flow in a circular duct is presented for the case of constant wall heat flux and constant wall temperature boundary conditions. The analysis is performed with a newly suggested model (Corcione) for effective thermal conductivity and viscosity, which show the effects of temperature and nanoparticle diameter. The results for Nusselt number and heat transfer enhancement are presented in graphical and tabular forms, for a given Peelet number, nanoparticle volumetric fraction, and particle diameter in the thermal entrance region. The results are compared with the experimental results available in the literature under the same conditions and a good agreement is found. The two boundary conditions are compared and slightly differing results are discussed. Finally, the effect of the axial conduction and viscous dissipation are investigated. The axial conduction effect is found to be negligible for practical cases while the viscous dissipation effect is found to be significantly important depending, on the boundary conditions and the pipe diameter.

Suggestions

Enhanced thermal conductivity of nanofluids: a state-of-the-art review
Özerinç, Sezer; Yazicioglu, Almila Guevenc (2010-02-01)
Adding small particles into a fluid in cooling and heating processes is one of the methods to increase the rate of heat transfer by convection between the fluid and the surface. In the past decade, a new class Of fluids called nanofluids, in which particles of size 1-100 nm with high thermal conductivity are Suspended in a conventional heat transfer base fluid, have been developed. It has been shown that nanofluids containing a small amount of metallic or nonmetallic particles, Such as Al2O3, CuO, Cu, SiO2,...
Numerical analysis of transient laminar forced convection of nanofluids in circular ducts
Sert, Ismail Ozan; Sezer Uzol, Nilay; Kakaç, Sadik (2013-10-01)
In this study, forced convection heat transfer characteristics of nanofluids are investigated by numerical analysis of incompressible transient laminar flow in a circular duct under step change in wall temperature and wall heat flux. The thermal responses of the system are obtained by solving energy equation under both transient and steady-state conditions for hydro-dynamically fully-developed flow. In the analyses, temperature dependent thermo-physical properties are also considered. In the numerical analy...
Analysis of Transient Laminar Forced Convection of Nanofluids in Circular Channels
Sert, İsmail Ozan; Sezer Uzol, Nilay; Güvenç Yazıcıoğlu, Almıla; Kakaç, Sadık (2012-11-15)
In this study, forced convection heat transfer Characteristics of nanofluids are investigated by numerical analysis of incompressible transient laminar flow in a circular duct under step change in wall temperature and wall heat flux. The thermal responses of the system are obtained by solving energy equation under both transient and steady-state conditions for hydrodynamically fully developed flow. In the analyses, temperature dependent thermo-physical properties are also considered. In the numerical analys...
Gradient-based optimization of micro-scale pressurized volumetric receiver geometry and flow rate
Akba, Tufan; Baker, Derek Keıth; Mengüç, M. Pınar (2023-02-01)
This study focuses on the design optimization of a micro-scale pressurized volumetric receiver by changing geometry and flow rate constrained by the volume, outlet air temperature, and outer surface temperature. The pressurized volumetric receiver model is replicated from an existing model, which assumes constant air pressure and neglects the convection loss from the cavity. The existing model is revised from a solver to a design optimizer. The replicated model is restructured using OpenMDAO (Open-source Mu...
Numerical simulation of transient turbulent flow in a heated pipe
Uygur, Ahmet Bilge; Selçuk, Nevin; Oymak, Olcay; Department of Chemical Engineering (2002)
A computational fluid dynamics (CFD) code based on direct numerical simulation (DNS) and the method of lines MOL approach developed previously for the solution of transient two-dimensional Navier-Stokes equations for turbulent, incompressible, internal, non-isothermal flows with constant wall temperature was applied to prediction of turbulent flow and temperature fields in flows dominated by forced convection in circular tubes with strong heating. Predictive ability of the code was tested by comparing its r...
Citation Formats
O. Kirez, A. Güvenç Yazıcıoğlu, and S. KAKAÇ, “NUMERICAL ANALYSIS OF CONVECTIVE HEAT TRANSFER OF NANOFLUIDS FOR LAMINAR FLOW IN A CIRCULAR TUBE,” 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/52787.