Nanoceria supported rhodium(0) nanoparticles as catalyst for hydrogen generation from methanolysis of ammonia borane

2018-12-05
Ozhava, Derya
Özkar, Saim
This work reports the preparation and catalytic use of nanoceria supported rhodium(0) nanoparticles, Rh(0)/nanoCeO(2), as catalyst for hydrogen generation from the methanolysis of ammonia borane. Rh(0)/nanoCeO(2) was in situ formed from the reduction of rhodium(II) octanoate on the surface of nanoceria during the catalytic methanolysis of ammonia borane at room temperature. The results of analysis using PXRD, TEM, STEM-EDS, XPS, SEM, SEM-EDX, N-2 adsorption-desorption and ICP-OES reveal that rhodium(0) nanoparticles were well dispersed on the surface of nanoceria with an average size of 3.9 +/- 0.6 nm. Rh(0)/nanoCeO(2) shows high catalytic activity in the methanolysis of ammonia borane with a turnover frequency of 144 min(-1). Note that hydrogen generation from the methanolysis of ammonia borane catalyzed by Rh(0)/nanoCeO(2) is slightly less than 3.0 equivalent, due to the reduction of Ce4+ ions to Ce3+ ions on the surface of nanoceria during the methanolysis of ammonia borane. The reduction of Ce4+ ions leading to the formation of Ce3+ defects on the surface of nanoceria under the catalytic reaction conditions could be investigated by high resolution Ce 3d XPS analysis. Additionally, the formation kinetic of rhodium(0) nanoparticles could be studied by using the hydrogen generation from the methanolysis of ammonia borane as reporter reaction; thus, the rate constants for the slow nucleation, k(1) and autocatalytic surface growth of rhodium(0) nanoparticles, k(2) were determined. Our report also includes the results of kinetic study of the catalytic methanolysis of ammonia borane depending on rhodium concentration and temperature.
APPLIED CATALYSIS B-ENVIRONMENTAL

Suggestions

Palladium(0) nanoparticles supported on polydopamine coated CoFe2O4 as highly active, magnetically isolable and reusable catalyst for hydrogen generation from the hydrolysis of ammonia borane
Manna, Joydev; Akbayrak, Serdar; Özkar, Saim (Elsevier BV, 2017-07-05)
Palladium(0) nanoparticles supported on cobalt ferrite (Pd degrees/CoFe2O4) are found to be highly active catalyst, providing an unprecedented catalytic activity with a turnover frequency of 290 min(-1) in hydrogen generation from the hydrolysis of ammonia borane at room temperature. However, the initial catalytic activity of Pd degrees/CoFe2O4 catalyst is not preserved after the reuse of the catalyst in hydrolytic dehydrogenation of ammonia borane. The stability of the catalyst is improved by using the pol...
Nanoceria supported palladium(0) nanoparticles: Superb catalyst in dehydrogenation of formic acid at room temperature
Akbayrak, Serdar; TONBUL, YALÇIN; Özkar, Saim (Elsevier BV, 2017-06-05)
Highly efficient dehydrogenation of formic acid (FA) at room temperature was achieved using palladium(0) nanoparticles supported on nanoceria (Pd-0/CeO2) as catalysts. Pd-0/CeO2 was prepared by impregnation of palladium(II) ions on the surface of ceria followed by their reduction with sodium borohydride in aqueous solution at room temperature. Pd((0)/CeO2 was isolated from the reaction solution by centrifugation and characterized by a combination of advanced analytical techniques. The catalytic activity of ...
Palladium(0) nanoparticles supported on silica-coated cobalt ferrite: A highly active, magnetically isolable and reusable catalyst for hydrolytic dehydrogenation of ammonia borane
Akbayrak, Serdar; KAYA, MURAT; Volkan, Mürvet; Özkar, Saim (Elsevier BV, 2014-04-05)
Palladium(0) nanoparticles supported on silica-coated cobalt ferrite (Pd(0)/SiO2-CoFe2O4) were in situ generated during the hydrolysis of ammonia borane, isolated from the reaction solution by using a permanent magnet and characterized by ICP-OES, XRD, TEM, TEM-EDX, XPS and the N-2 adsorption-desorption techniques. All the results reveal that well dispersed palladium(0) nanoparticles were successfully supported on silica coated cobalt ferrite and the resulting Pd(0)/SiO2-CoFe2O4 are highly active, magnetica...
Rhodium(0) nanoparticles supported on nanosilica: Highly active and long lived catalyst in hydrogen generation from the methanolysis of ammonia borane
Ozhava, Derya; Özkar, Saim (Elsevier BV, 2016-02-01)
Nanosilica stabilized rhodium(0) nanoparticles (Rh(0)/nanoSiO(2)), in situ formed from the reduction of rhodium(II) octanoate impregnated on the surface of nanosilica, are active catalyst in hydrogen generation from the methanolysis of ammonia borane at room temperature. Monitoring the hydrogen evolution enables us to follow the kinetics of nanoparticles formation. The resulting sigmoidal kinetic curves are analyzed by using the 2-step mechanism of the slow, continuous nucleation and autocatalytic surface g...
Aqueous-phase hydrodechlorination of trichloroethylene over Pd-based swellable organically-modified silica (SOMS): Catalyst deactivation due to chloride anions
Çelik, Gökhan; Gunduz, Seval; Miller, Jeffrey T.; Edmiston, Paul L.; Ozkan, Umit S. (Elsevier BV, 2018-12-30)
Swellable-organically modified silica (SOMS) has been demonstrated to be an efficient catalyst scaffold for catalytic treatment of water contaminated with trichloroethylene (TCE). In this study, deactivation characteristics of Pd-incorporated SOMS for aqueous-phase hydrodechlorination (HDC) of TCE were investigated. Pd/SOMS catalysts were exposed to highly-concentrated chloride solutions (up to 1 M NaCl or 0.01 M HCl) to examine the deactivation resistant behavior of Pd/SOMS. The commonly used HDC catalyst ...
Citation Formats
D. Ozhava and S. Özkar, “Nanoceria supported rhodium(0) nanoparticles as catalyst for hydrogen generation from methanolysis of ammonia borane,” APPLIED CATALYSIS B-ENVIRONMENTAL, pp. 1012–1020, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/43377.