Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Generation of optimized voronoi based interior structures for improved mechanical properties
Date
2019-01-01
Author
Öncel, Anil Can
Yaman, Ulaş
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
3
views
0
downloads
General design approaches are related with and inspired by natural examples. Since evolution itself pushes beings to their full potentials in the most efficient way, it is important for us to understand, observe and mimic the nature itself. In this study, naturally inspired internal structures are constructed by using hollow Voronoi cells and models are optimized to meet the design requirements. For this purpose, design volume firstly undergoes topology optimization with specific load and support conditions, and then the volume is divided into several density regions. Cell generation algorithm advances according to the average stress values in these corresponding regions, the number of seeds in structurally critical regions is higher than others. Thus, the results of the optimization are reflected on the models. Since the Voronoi based interior has high porosity, the selected test models are manufactured via Fused Filament Fabrication process. The proposed approach is tested on these cases and the performance of the method is compared with respect to the cases having random Voronoi site distributions. According to the test results, strength-to-weight ratios of the tested artifacts are enhanced.
Subject Keywords
Voronoi
,
Additive manufacturing
,
FFF
,
Optimization
URI
https://hdl.handle.net/11511/43394
DOI
https://doi.org/10.1016/j.promfg.2020.01.006
Collections
Department of Mechanical Engineering, Conference / Seminar