Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Co-sputtered Cu2ZnTi(S:Se)(4) absorbers for thin film solar cells
Date
2020-01-01
Author
Batibay, Derya
OCAK, YUSUF SELİM
GENİŞEL, MUSTAFA FATİH
Turan, Raşit
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
2
views
0
downloads
Thin film solar cells are an exciting topic for low cost and high efficient solar cells. Owing to the high price of the indium metal in the fabrication of copper indium gallium diselenide (CIGS) solar cells, Cu2ZnSn(SSe)(4) thin films are used as a new material to reduce the cost and increase the efficiency. As an alternative absorber material for solar cell production, Cu2ZnTi(S:Se)(4) thin films were deposited by the co-sputtering method at various temperatures. During the deposition, Cu, ZnSe and Ti targets were used as metal sources. The Cu2ZnTi(S:Se)(4) thin films were annealed in H2S:Ar (1:9) atmosphere. The morphological, structural and optical properties of Cu2ZnTi(S:Se)(4) thin films was analyzed using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) Raman spectroscopy and UV-Vis-NIR spectrometer. It was seen that the thin films had good optical absorption till the infrared region and the band gap of the Cu2ZnTi(S:Se)(4) thin films were smaller than the conventional Cu2ZnSnS4 thin films. Furthermore, fabrication of a solar cell with 1.96% power conversion efficiency was reported using a Cu2ZnTi(S:Se)(4) thin film as a low cost absorber layer.
Subject Keywords
Renewable Energy, Sustainability and the Environment
URI
https://hdl.handle.net/11511/43440
Journal
RENEWABLE ENERGY
DOI
https://doi.org/10.1016/j.renene.2019.07.086
Collections
Department of Physics, Article