Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Attentive deep regression networks for real-time visual face tracking in video surveillance
Download
index.pdf
Date
2019
Author
Alver, Safa
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
194
views
71
downloads
Cite This
Visual face tracking is one of the most important tasks in video surveillance systems. However, due to the variations in pose, scale, expression and illumination and the occlusions in cluttered scenes, it is considered to be a difficult task. To address these challenges, in this thesis, we propose an end-to-end tracker named Attentive Face Tracking Network (AFTN) that is build on top of the GOTURN tracker. Additionally, to overcome the scarce data problem in visual face tracking, we also provide bounding box annotations for the publicly available ChokePoint dataset and thus make it available for further studies in face tracking under surveillance conditions. Our test results show that our proposed tracker outperforms all the other trackers that are primitive versions of itself. Furthermore, it runs at speeds that are far beyond the requirements of real-time tracking.
Subject Keywords
Video surveillance.
,
Keywords: Channel Attention
,
Convolutional Neural Networks
,
Deep Learning
,
Video Surveillance
,
Visual Face Tracking
,
Visual Object Tracking.
URI
http://etd.lib.metu.edu.tr/upload/12623465/index.pdf
https://hdl.handle.net/11511/43598
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Face Recognition Based on Embedding Learning
Karaman, Kaan; Koc, Aykut; Alatan, Abdullah Aydın (2018-09-11)
Face recognition is a key task of computer vision research that has been employed in various security and surveillance applications. Recently, the importance of this task has risen with the improvements in the quality of sensors of cameras, as well as with the increasing coverage of camera networks setup everywhere in the cities. Moreover, biometry-based technologies have been developed for the last three decades and have been available on many devices such as the mobile phones. The goal is to identify peop...
3D TRACKING OF PEOPLE WITH RAO-BLACKWELLIZED PARTICLE FILTERS
Topcu, Osman; Orguner, Umut; Alatan, Abdullah Aydın; ERCAN, ALİ ÖZER (2014-04-25)
Visual tracking has an important place among computer vision applications. Visual tracking with particle filters is a well-known methodology. The performance of particle filters is dependent on efficient sampling of the state space, which in turn, is dependent on number of particles. In this paper, Rao-Blackwell technique is applied to particle filters to improve sampling efficiency. Both algorithms are applied to people tracking problem. Under the same circumstances, the resulting algorithm is demonstrated...
Automated crowd behavior analysis for video surveillance applications
Güler, Püren; Temizel, Alptekin; Taşkaya Temizel, Tuğba; Department of Information Systems (2012)
Automated analysis of a crowd behavior using surveillance videos is an important issue for public security, as it allows detection of dangerous crowds and where they are headed. Computer vision based crowd analysis algorithms can be divided into three groups; people counting, people tracking and crowd behavior analysis. In this thesis, the behavior understanding will be used for crowd behavior analysis. In the literature, there are two types of approaches for behavior understanding problem: analyzing behavi...
Fine‐grained recognition of maritime vessels and land vehicles by deep feature embedding
Solmaz, Berkan; Gundogdu, Erhan; Yucesoy, Veysel; Koc, Aykut; Alatan, Abdullah Aydın (2018-12-01)
Recent advances in large-scale image and video analysis have empowered the potential capabilities of visual surveillance systems. In particular, deep learning-based approaches bring in substantial benefits in solving certain computer vision problems such as fine-grained object recognition. Here, the authors mainly concentrate on classification and identification of maritime vessels and land vehicles, which are the key constituents of visual surveillance systems. Employing publicly available data sets for ma...
A multimodal approach for individual tracking of people and their belongings
Beyan, Çiğdem; Temizel, Alptekin (2015-04-01)
In this study, a fully automatic surveillance system for indoor environments which is capable of tracking multiple objects using both visible and thermal band images is proposed. These two modalities are fused to track people and the objects they carry separately using their heat signatures and the owners of the belongings are determined. Fusion of complementary information from different modalities (for example, thermal images are not affected by shadows and there is no thermal reflection or halo effect in...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Alver, “Attentive deep regression networks for real-time visual face tracking in video surveillance,” Thesis (M.S.) -- Graduate School of Natural and Applied Sciences. Electrical and Electronics Engineering., Middle East Technical University, 2019.