Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Videos
Videos
Thesis submission
Thesis submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Contact us
Contact us
Through-The-Wall Target Detection using GPR A-Scan Data: Effects of Different Wall Structures on Detection Performance
Date
2017-09-27
Author
DOĞAN, MESUT
Sayan, Gönül
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
19
views
0
downloads
Cite This
Ground penetrating radar (GPR) is an electromagnetic sensor based on the ultra-wideband radar technology that can also be used for through-the-wall (TTW) target recognition. Search for the presence of designated targets hidden behind the walls, such as stationary or moving human bodies or certain types of weapons, is addressed in various critical applications; in rescue missions after earthquakes or in military operations, etc. In such inverse problems, type of the wall is as important as the properties and location of the hidden target. Interpretation of the basic A-Scan GPR signals is a challenging task in the TTW target detection problem especially when the wall is constructed by bricks containing air-filled holes. In this paper, a simplified TTW target detection scenario is defined using cylindrical targets made of conductor or plastic materials. The target is placed behind the brick wall at different distances where the wall is made of either homogeneous solid bricks or inhomogeneous bricks that contain periodically located air-filled compartments. GPR signals are simulated for such target detection scenarios using a numerical computation tool that is based on the finite difference time domain (FDTD) technique. Then, simulated signals are analyzed in time domain for preprocessing and target detection. Energy based signal features are used to eliminate strong early-time reflections from the front face of the wall to enhance the signal components scattered by the target for better detection performance.
Subject Keywords
Ground penetrating radar (GPR)
,
Through-the-wall target detection (TTW)
,
Ultra-wideband sensing
,
Feature extraction
,
Preprocessing
,
Cumulative energy curves
URI
https://hdl.handle.net/11511/43602
DOI
https://doi.org/10.1109/emct.2017.8090366
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. DOĞAN and G. Sayan, “Through-The-Wall Target Detection using GPR A-Scan Data: Effects of Different Wall Structures on Detection Performance,” 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/43602.