Through-The-Wall Target Detection using GPR A-Scan Data: Effects of Different Wall Structures on Detection Performance

2017-09-27
DOĞAN, MESUT
Sayan, Gönül
Ground penetrating radar (GPR) is an electromagnetic sensor based on the ultra-wideband radar technology that can also be used for through-the-wall (TTW) target recognition. Search for the presence of designated targets hidden behind the walls, such as stationary or moving human bodies or certain types of weapons, is addressed in various critical applications; in rescue missions after earthquakes or in military operations, etc. In such inverse problems, type of the wall is as important as the properties and location of the hidden target. Interpretation of the basic A-Scan GPR signals is a challenging task in the TTW target detection problem especially when the wall is constructed by bricks containing air-filled holes. In this paper, a simplified TTW target detection scenario is defined using cylindrical targets made of conductor or plastic materials. The target is placed behind the brick wall at different distances where the wall is made of either homogeneous solid bricks or inhomogeneous bricks that contain periodically located air-filled compartments. GPR signals are simulated for such target detection scenarios using a numerical computation tool that is based on the finite difference time domain (FDTD) technique. Then, simulated signals are analyzed in time domain for preprocessing and target detection. Energy based signal features are used to eliminate strong early-time reflections from the front face of the wall to enhance the signal components scattered by the target for better detection performance.

Suggestions

Through-the-wall target detection by energy features extracted from simulated ultra wideband radar signals (Çok Geniş Bantli Radar Benzetim Sinyallerinden Hesaplanan Enerji Öznitelikleri ile Duvar Arkasindaki Hedeflerin Tespiti)
DOĞAN, MESUT; Sayan, Gönül (2017-05-18)
The ultra-wideband ground penetrating radars (GPRs) are successful in sensing not only conductors but also dielectric objects. For that reason, GPRs are used in many applications to detect and identify objects, which are hidden behind obstacles such as walls or buried under ground. In such problems, the early reflections from the wall or ground surfaces are very strong. These strong electromagnetic wave components must be removed during the "preprocessing" phase by suitable and effective methods as they lea...
Inside-the-wall detection of objects with low metal content using the GPR sensor: effects of different wall structures on the detection performance
DOĞAN, MESUT; YESİLTURT, Omer; Sayan, Gönül (2018-04-19)
Ground penetrating radar (GPR) is an ultra-wideband electromagnetic sensor used not only for subsurface sensing but also for the detection of objects which may be hidden behind a wall or inserted within the wall. Such applications of the GPR technology are used in both military and civilian operations such as mine or IED (improvised explosive device) detection, rescue missions after earthquakes and investigation of archeological sites. Detection of concealed objects with low metal content is known to be a c...
Determination of buried circular cylinder with ground penetrating radar using an optical fiber sensor
Bulur, Hatice Gonca; Şahin, Asaf Behzat; Department of Electrical and Electronics Engineering (2011)
The terms ‘ground-probing radar’, ‘ground penetrating radar (GPR)’, ‘sub-surface radar’ or ‘surface-penetrating radar (SPR)’ refer to various techniques for detecting and imaging of subsurface objects. Among those terms GPR is preferred and used more often. In this thesis, the depth and the position of the buried circular cylinder are determined by a GPR system which comprises of an optical fiber sensor (OFS). The system is a combination of OFS, GPR and optical communication link. In order to determine the ...
Combination of physics-based and image-based features for landmine identification in ground penetrating radar data
Genc, Alper; Akar, Gözde (SPIE-Intl Soc Optical Eng, 2019-4-23)
Ground penetrating radar (GPR) is a powerful technology for detection and identification of buried explosives, especially with little or no metal content. However, subsurface clutter and soil distortions increase false alarm rates of current GPR-based landmine detection and identification methods. Most existing algorithms use shape-based, image-based, and physics-based techniques. Analysis of these techniques indicates that each type of algorithm has a different perspective to solve the landmine detection a...
Investigation of Simulated Ground Penetrating Radar Data for Buried Objects Using Quadratic Time-Frequency Transformations
DOĞAN, MESUT; Sayan, Gönül (2017-07-14)
Sub-surface sensing is a challenging area of research that highly benefits from the use of ultra-wideband ground penetrating radar (GPR) technology. Detection and classification of buried objects with reduced false alarm rates is still open to improvements. Use of joint temporal and spectral target features obtained from electromagnetic GPR signals using time-frequency representation (TFR) methods is highly promising because TFRs provide detailed information about the energy distribution of GPR signals over...
Citation Formats
M. DOĞAN and G. Sayan, “Through-The-Wall Target Detection using GPR A-Scan Data: Effects of Different Wall Structures on Detection Performance,” 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/43602.