Inside-the-wall detection of objects with low metal content using the GPR sensor: effects of different wall structures on the detection performance

2018-04-19
DOĞAN, MESUT
YESİLTURT, Omer
Sayan, Gönül
Ground penetrating radar (GPR) is an ultra-wideband electromagnetic sensor used not only for subsurface sensing but also for the detection of objects which may be hidden behind a wall or inserted within the wall. Such applications of the GPR technology are used in both military and civilian operations such as mine or IED (improvised explosive device) detection, rescue missions after earthquakes and investigation of archeological sites. Detection of concealed objects with low metal content is known to be a challenging problem in general. Use of A-scan, B-scan and C-scan GPR data in combination provides valuable information for target recognition in such applications. In this paper, we study the problem of target detection for potentially explosive objects embedded inside a wall. GPR data is numerically simulated by using an FDTD-based numerical computation tool when dielectric targets and targets with low metal content are inserted into different types of walls. A small size plastic bottle filled with trinitrotoluene (TNT) is used as the target with and without a metal fuse in it. The targets are buried into two different types of wall; a homogeneous brick wall and an inhomogeneous wall constructed by bricks having periodically located air holes in it. Effects of using an inhomogeneous wall structure with internal boundaries are investigated as a challenging scenario, paying special attention to preprocessing.

Suggestions

Through-The-Wall Target Detection using GPR A-Scan Data: Effects of Different Wall Structures on Detection Performance
DOĞAN, MESUT; Sayan, Gönül (2017-09-27)
Ground penetrating radar (GPR) is an electromagnetic sensor based on the ultra-wideband radar technology that can also be used for through-the-wall (TTW) target recognition. Search for the presence of designated targets hidden behind the walls, such as stationary or moving human bodies or certain types of weapons, is addressed in various critical applications; in rescue missions after earthquakes or in military operations, etc. In such inverse problems, type of the wall is as important as the properties and...
Detection and Microwave Imaging of Conducting Objects Buried Very Closely to the Air-Soil Boundary
Dinc, Selman; Elibol, Hande; Guneri, Rutkay; Ozdol, Ali Bahadir; Sik, Furkan; Yesilyurt, Ismail Taylan; DOĞAN, MESUT; Sayan, Gönül (2019-01-01)
Down-looking Ground Penetrating Radar (GPR) is an ultra-wideband electromagnetic sensor which has important applications such as IED and landmine detection, locating people in earthquake rescue operations, detection of archeological sites, mapping ice thickness or quantification of sedimentary structures in geophysical applications. The very first and important step in target detection by GPR is the removal of ground reflections caused by the air-soil boundary as these undesired signals are usually much st...
Through-the-wall target detection by energy features extracted from simulated ultra wideband radar signals (Çok Geniş Bantli Radar Benzetim Sinyallerinden Hesaplanan Enerji Öznitelikleri ile Duvar Arkasindaki Hedeflerin Tespiti)
DOĞAN, MESUT; Sayan, Gönül (2017-05-18)
The ultra-wideband ground penetrating radars (GPRs) are successful in sensing not only conductors but also dielectric objects. For that reason, GPRs are used in many applications to detect and identify objects, which are hidden behind obstacles such as walls or buried under ground. In such problems, the early reflections from the wall or ground surfaces are very strong. These strong electromagnetic wave components must be removed during the "preprocessing" phase by suitable and effective methods as they lea...
Investigation of Simulated Ground Penetrating Radar Data for Buried Objects Using Quadratic Time-Frequency Transformations
DOĞAN, MESUT; Sayan, Gönül (2017-07-14)
Sub-surface sensing is a challenging area of research that highly benefits from the use of ultra-wideband ground penetrating radar (GPR) technology. Detection and classification of buried objects with reduced false alarm rates is still open to improvements. Use of joint temporal and spectral target features obtained from electromagnetic GPR signals using time-frequency representation (TFR) methods is highly promising because TFRs provide detailed information about the energy distribution of GPR signals over...
Parametric estimation of clutter autocorrelation matrix for ground moving target indication
Kalender, Emre; Tanık, Yalçın; Department of Electrical and Electronics Engineering (2013)
In airborne radar systems with Ground Moving Target Indication (GMTI) mode, it is desired to detect the presence of targets in the interference consisting of noise, ground clutter, and jamming signals. These interference components usually mask the target return signal, such that the detection requires suppression of the interference signals. Space-time adaptive processing is a widely used interference suppression technique which uses temporal and spatial information to eliminate the effects of clutter and ...
Citation Formats
M. DOĞAN, O. YESİLTURT, and G. Sayan, “Inside-the-wall detection of objects with low metal content using the GPR sensor: effects of different wall structures on the detection performance,” 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37348.