Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Position estimation for timing belt drives of precision machinery using structured neural networks
Date
2012-05-01
Author
KILIÇ, Ergin
DOĞRUER, CAN ULAŞ
Dölen, Melik
Koku, Ahmet Buğra
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
239
views
0
downloads
Cite This
This paper focuses on a viable position estimation scheme for timing-belt drives using artificial neural networks. In this study, the position of a carriage (load) is calculated via a structured neural network topology accepting input from a position sensor on the actuator side of the timing belt. The paper presents a detailed discussion on the source of transmission errors. The characteristics of the error in different operation regimes are exploited to construct different network topologies. That is, a relevant neural network model is developed by the sketchy guidance of a priori knowledge on the process. The resulting structured neural network is shown to estimate the error of the carriage quite accurately whereas generic recurrent neural networks fail to capture the dynamics of the system under investigation altogether. Extensive testing demonstrates the effectiveness of proposed method when the drive system is not subjected to external loads while the operating conditions such as ambient temperature and belt tensions do not deviate from the experimental conditions.
Subject Keywords
Position error estimation
,
Nonlinear systems
,
Timing belt drives
,
Structured neural networks
URI
https://hdl.handle.net/11511/43644
Journal
MECHANICAL SYSTEMS AND SIGNAL PROCESSING
DOI
https://doi.org/10.1016/j.ymssp.2011.10.013
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
Representing temporal knowledge in connectionist expert systems
Alpaslan, Ferda Nur (1996-09-27)
This paper introduces a new temporal neural networks model which can be used in connectionist expert systems. Also, a Variation of backpropagation algorithm, called the temporal feedforward backpropagation algorithm is introduced as a method for training the neural network. The algorithm was tested using training examples extracted from a medical expert system. A series of experiments were carried out using the temporal model and the temporal backpropagation algorithm. The experiments indicated that the alg...
Mobile Robot Heading Adjustment Using Radial Basis Function Neural Networks Controller and Reinforcement Learning
BAYAR, GÖKHAN; Konukseven, Erhan İlhan; Koku, Ahmet Buğra (2008-10-28)
This paper proposes radial basis function neural networks approach to the Solution of a mobile robot heading adjustment using reinforcement learning. In order to control the heading of the mobile robot, the neural networks control system have been constructed and implemented. Neural controller has been charged to enhance the control system by adding some degrees of strength. It has been achieved that neural networks system can learn the relationship between the desired directional heading and the error posi...
Neural networks with piecewise constant argument and impact activation
Yılmaz, Enes; Akhmet, Marat; Department of Scientific Computing (2011)
This dissertation addresses the new models in mathematical neuroscience: artificial neural networks, which have many similarities with the structure of human brain and the functions of cells by electronic circuits. The networks have been investigated due to their extensive applications in classification of patterns, associative memories, image processing, artificial intelligence, signal processing and optimization problems. These applications depend crucially on the dynamical behaviors of the networks. In t...
Geospatial object recognition using deep networks for satellite images
Barut, Onur; Alatan, Abdullah Aydın; Department of Electrical and Electronics Engineering (2018)
Deep learning paradigm has been drawing significant interest during the last decade due to the recent developments in novel machine learning algorithms and improvements in computational hardware. Satellite image analysis is also an important scientific area with many objectives, such as disaster and crisis management, forest cover, road mapping, city planning, even military purposes. Spatial correlations of land cover or geospatial objects between different images lead to widely utilization of convolutional...
Case studies on the use of neural networks in eutrophication modeling
Karul, C; Soyupak, S; Cilesiz, AF; Akbay, N; Germen, E (2000-10-30)
Artificial neural networks are becoming more and more common to be used in development of prediction models for complex systems as the theory behind them develops and the processing power of computers increase. A three layer Levenberg-Marquardt feedforward learning algorithm was used to model the eutrophication process in three water bodies of Turkey (Keban Dam Reservoir, Mogan and Eymir Lakes). Despite the very complex and peculiar nature of Keban Dam, a relatively good correlation (correlation coefficient...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. KILIÇ, C. U. DOĞRUER, M. Dölen, and A. B. Koku, “Position estimation for timing belt drives of precision machinery using structured neural networks,”
MECHANICAL SYSTEMS AND SIGNAL PROCESSING
, pp. 343–361, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/43644.