Representing temporal knowledge in connectionist expert systems

1996-09-27
This paper introduces a new temporal neural networks model which can be used in connectionist expert systems. Also, a Variation of backpropagation algorithm, called the temporal feedforward backpropagation algorithm is introduced as a method for training the neural network. The algorithm was tested using training examples extracted from a medical expert system. A series of experiments were carried out using the temporal model and the temporal backpropagation algorithm. The experiments indicated that the algorithm produces correct results and the model correctly represents explicit sequences of time. Another advantage of the algorithm is possibility of implementing it on general purpose parallel machines. The paper briefly discusses the parallelism issues of this algorithm.

Suggestions

A new approach to mathematical water quality modeling in reservoirs: Neural networks
Karul, C; Soyupak, S; Germen, E (1998-01-01)
Neural Networks are becoming more and more valuable tools for system modeling and function approximation as computing power of microcomputers increase. Modeling of complex ecological systems such as reservoir limnology is very difficult since the ecological interactions within a reservoir are difficult to define mathematically and are usually system specific. To illustrate the potential use of Neural Networks in ecological modeling, a software was developed to train the data from Keban Dam Reservoir by back...
Position estimation for timing belt drives of precision machinery using structured neural networks
KILIÇ, Ergin; DOĞRUER, CAN ULAŞ; Dölen, Melik; Koku, Ahmet Buğra (2012-05-01)
This paper focuses on a viable position estimation scheme for timing-belt drives using artificial neural networks. In this study, the position of a carriage (load) is calculated via a structured neural network topology accepting input from a position sensor on the actuator side of the timing belt. The paper presents a detailed discussion on the source of transmission errors. The characteristics of the error in different operation regimes are exploited to construct different network topologies. That is, a re...
A neuro-fuzzy MAR algorithm for temporal rule-based systems
Sisman, NA; Alpaslan, Ferda Nur; Akman, V (1999-08-04)
This paper introduces a new neuro-fuzzy model for constructing a knowledge base of temporal fuzzy rules obtained by the Multivariate Autoregressive (MAR) algorithm. The model described contains two main parts, one for fuzzy-rule extraction and one for the storage of extracted rules. The fuzzy rules are obtained from time series data using the MAR algorithm. Time-series analysis basically deals with tabular data. It interprets the data obtained for making inferences about future behavior of the variables. Fu...
Neural networks with piecewise constant argument and impact activation
Yılmaz, Enes; Akhmet, Marat; Department of Scientific Computing (2011)
This dissertation addresses the new models in mathematical neuroscience: artificial neural networks, which have many similarities with the structure of human brain and the functions of cells by electronic circuits. The networks have been investigated due to their extensive applications in classification of patterns, associative memories, image processing, artificial intelligence, signal processing and optimization problems. These applications depend crucially on the dynamical behaviors of the networks. In t...
Neural identification of dynamic systems on FPGA with improved PSO learning
Cavuslu, Mehmet Ali; KARAKUZU, CİHAN; KARAKAYA, FUAT (2012-09-01)
This work introduces hardware implementation of artificial neural networks (ANNs) with learning ability on field programmable gate array (FPGA) for dynamic system identification. The learning phase is accomplished by using the improved particle swarm optimization (PSO). The improved PSO is obtained by modifying the velocity update function. Adding an extra term to the velocity update function reduced the possibility of stucking in a local minimum. The results indicates that ANN, trained using improved PSO a...
Citation Formats
F. N. Alpaslan, “Representing temporal knowledge in connectionist expert systems,” 1996, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/54515.