Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Phase equilibria of binary systems with carbon dioxide and carbon dioxide-philic materials
Download
index.pdf
Date
2019
Author
Dumanlılar, Beril.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
2
views
0
downloads
Phase behavior investigations in supercritical carbon dioxide (scCO2) permit design and development of new and environmentally friendly supercritical fluid processes. Recently polyhedral oligomeric silsesquioxanes (POSS) modified with certain functional groups have been found to be soluble in supercritical CO2. In this thesis, solubilities of methacrylisobutyl POSS (MIBPOSS) and methacrylisooctyl POSS (MIOPOSS) in scCO2 have been studied. In the structure of these molecules, one of the eight branched alkyl chain functionalities attached to the Si atoms of the cage structure has been replaced with a CO2-philic functional group, methacryl, to improve the enthalpic contribution on their solubility. The cloud or dew points were determined using a high-pressure visible cell at the temperature range of 308-323 K, up to 22.1 MPa. The measured highest solubility of MIBPOSS was 0.006 mol fr. at 323 K and 16.8 MPa, while it was 0.0017 mol fr. at 323 K and 22.1 MPa for MIOPOSS. Both MIBPOSS and MIOPOSS exhibit higher solubilities in scCO2 compared to their counterparts with single type of functionality, octaisobutyl POSS, isooctyl POSS and methacryl POSS. The solubility data were modeled by using six different density-based semi-empirical models, all of which give good correlations. One interesting feature that was observed in the phase behavior studies of the MIBPOSS-CO2 binary system was pressure-induced melting temperature (MT) depression of POSS. The maximum measured decrease in the MT was 77 K degrees under the CO2 pressure of 4.8 MPa. Beside these studies, a model was developed to predict the MT depression of various CO2-philic aromatic molecules including naphthalene, biphenyl and 1, 3, 5-tri-terbutylbenzene (TTBB) in CO2, which sufficiently predicted their MT depression behavior.
Subject Keywords
Carbon dioxide.
,
Keywords: POSS
,
Supercritical Carbon Dioxide
,
Phase Behavior
,
Solubility
,
Density Based Models
URI
http://etd.lib.metu.edu.tr/upload/12623556/index.pdf
https://hdl.handle.net/11511/43676
Collections
Graduate School of Natural and Applied Sciences, Thesis