Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
The effect of strain rate and temperature on deep drawing for different constitutive relations
Download
index.pdf
Date
2019
Author
Gökşen, Seçkin
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
320
views
123
downloads
Cite This
In this study, the effects of strain rate and temperature on deep drawing process are investigated by considering different yield criteria and hardening models. For this purpose, various punch velocity and temperature values are considered using 1 mmthick DKP6112 and AZ31 sheet materials. The results are compared according to thickness strain distribution and punch force obtained by a commercial finite element software. To express constitutive relations of corresponding materials for different strain rate and temperature values, phenomenological models of Johnson-Cook, RuleJones, Tuazon, Couque are used. In order to observe the influence of yield criteria, the analyses are performed with Von-Mises, Hill48 and Yld2003 yield criteria. To predict the effect of punch velocity and temperature on formability, forming limit diagrams are also obtained for both materials at different conditions. The maximum value of second derivative of strain with respect to time is used as strain localization criterion to predict the necking.
Subject Keywords
Deep drawing (Metal-work).
,
Deep drawing
,
constitutive equations
,
strain rate
,
temperature
,
formability
URI
http://etd.lib.metu.edu.tr/upload/12623670/index.pdf
https://hdl.handle.net/11511/43824
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Analysis of effects of temperature variation on deep drawing process using different constitutive laws
Demirkol, Rasih Hakan; Darendeliler, Haluk; Department of Mechanical Engineering (2019)
In this study, the influences of temperature variation in deep drawing process are investigated by changing the temperatures of the whole blank, a part of the blank, the punch and die. Different yield criteria and hardening rules are considered to form the constitutive relations. The numerical results are obtained by using a commercial finite element software. Whereas Von-Mises and Hill48 yield criteria are available in the finite element code, a subroutine is developed for embedding the Yld2003 yield crite...
Modelling and simulation of friction in deep drawing
Başpınar, Murat; Akkök, Metin; Department of Mechanical Engineering (2011)
Different contact surface parameters and operating characteristics are observed during the deep drawing process. It is not possible to find a formulation that can be used for all lubrication regimes. Therefore, several friction models have been developed in order to overcome this problem. In this study, a math program is developed which combines Wilson’s and Khonsari’s friction models in a new model in order to increase accuracy and efficiency in friction calculations. By comparing the results of both frict...
Analysis of wrinkling in deep drawing processes
Dal, Saniye Rabia; Darendeliler, Haluk; Department of Mechanical Engineering (2019)
Wrinkling, observed due to compressive instability, is one of the main failure modes in deep drawing processes. The prediction and prevention of wrinkles are critical for production of stamping parts which require good surface quality. In the current work, the occurrence of wrinkling in square and cylindrical cup deep drawing processes are investigated considering various constitutive models; formed by using CPB06ex2, Hill’48, BBC2008-8p, BBC2008-16p, and von Mises yield criterion with isotropic, kinematic ...
The deactivation behavior of the TiO2 used as a photo-catalyst for benzene oxidation
Üner, Deniz (1999-01-01)
In this study, the deactivation behavior of TiO2 as a photocatalyst for benzene decomposition to carbon dioxide and water was investigated. The effect of space time on the benzene and carbon dioxide conversions were monitored. Benzene conversion and carbon dioxide production rates were not correlated, indicating accumulation of a carbon containing intermediate on the surface. This intermediate was blocking the active sites at a stiochiometry of 1 C:1 site. High space times favored the production of carbon d...
The effect of magnisium to sulfur ratio on the graphite morphology of graphite cast iron produced at differrent section thicknesses
ELMABROUK, Omar; ERFAN, Osama M.; Kalkanlı, Ali (2011-09-18)
This paper is concerned with the investigation of the effect of magnesium to sulfur ratio on the graphite morphology and estimation of the ranges of this ratio use to produce graphite cast iron at different section sections. The main factors affecting shape of graphite cast iron are the metallurgical structures and the section thicknesses. Cast iron of different shapes of graphite particles directly affect its thermo-mechanical properties. The nodular shape of these graphite particles such as in ductile cas...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Gökşen, “The effect of strain rate and temperature on deep drawing for different constitutive relations,” Thesis (M.S.) -- Graduate School of Natural and Applied Sciences. Mechanical Engineering., Middle East Technical University, 2019.