Nonlinear modeling and vibration analysis of horizontal drum type washing machines

Download
2019
Baykal, Cem
Nonlinear two and three-dimensional dynamical models for horizontal drum type washing machines are developed considering rotating unbalance type excitation. Nonlinear differential equations of motion are converted into a set of nonlinear algebraic equations by using the Harmonic Balance Method (HBM). The resulting nonlinear algebraic equations are solved by using Newton’s method with arc-length continuation. Several case studies are performed in order to observe the effects of orientation angles of springs and dampers between the drum and the cabinet. In order to reduce the steady-state vibration amplitude of the drum, suitable orientation angles of the springs and dampers and their implementation locations are identified. Furthermore, to further reduce the vibration amplitude of the drum at high frequencies, instead of viscous dampers, dry friction dampers are installed in the system. Effects of orientation angles and parameters of the dry friction damper and springs on the force transmitted to the cabinet are studied.

Suggestions

Nonlinear 3D Modeling and Vibration Analysis of Horizontal Drum Type Washing Machines
Baykal, Cem; Ciğeroğlu, Ender; Yazıcıoğlu, Yiğit (2020-01-01)
In this study, a nonlinear 3-D mathematical model for horizontal drum type washing machines is developed considering rotating unbalance type excitation. Nonlinear differential equations of motion are converted into a set of nonlinear algebraic equations by using Harmonic Balance Method (HBM). The resulting nonlinear algebraic equations are solved by using Newton’s method with arc-length continuation. Several case studies are performed in order to observe the effects of orientation angles of springs and damp...
Vibration analysis of washing machines in the drum plane
Baykal, Cem; Ciğeroğlu, Ender; Yazıcıoğlu, Yiğit (Springer, Cham; 2019-02-20)
In this study, a nonlinear mathematical model for drum-type washing machines is developed considering rotating unbalance type excitation. Nonlinear differential equations of motion are converted into a set of nonlinear algebraic equations by using harmonic balance method (HBM). The resulting nonlinear algebraic equations are solved by using Newton’s method with arc-length continuation. Several case studies are performed in order to observe the effects of orientation angles of springs and dampers supporting ...
Nonlinear Dynamic Analysis of a Spiral Bevel Geared System
Yavuz, Siar Deniz; Saribay, Zihni Burcay; Ciğeroğlu, Ender (2017-02-02)
A nonlinear dynamic model of a spiral bevel gear train mounted on flexible shafts and bearings is proposed in this study. The finite element model of shafts is combined with a three-dimensional discrete mesh model of a spiral bevel gear pair. Bearing flexibilities are as well included in the model. Gear backlash is incorporated into the model in the form of clearance-type displacement functions and clearance nonlinearity and stiffness fluctuations of the bearings are neglected. A time-invariant mesh stiffne...
Lateral stiffness estimation in frames and its implementation to continuum models for linear and nonlinear static analysis
EROĞLU AZAK, TUBA; Akkar, Dede Sinan (2011-08-01)
Continuum model is a useful tool for approximate analysis of tall structures including moment-resisting frames and shear wall-frame systems. In continuum model, discrete buildings are simplified such that their overall behavior is described through the contributions of flexural and shear stiffnesses at the story levels. Therefore, accurate determination of these lateral stiffness components constitutes one of the major issues in establishing reliable continuum models even if the proposed solution is an appr...
Nonlinear resonances of axially functionally graded beams rotating with varying speed including Coriolis effects
Lotfan, Saeed; Anamagh, Mirmeysam Rafiei; Bediz, Bekir; Ciğeroğlu, Ender (2021-11-01)
The purpose of the current study was to develop an accurate model to investigate the nonlinear resonances in an axially functionally graded beam rotating with time-dependent speed. To this end, two important features including stiffening and Coriolis effects are modeled based on nonlinear strain relations. Equations governing the axial, chordwise, and flapwise deformations about the determined steady-state equilibrium position are obtained, and the rotating speed variation is considered as a periodic distur...
Citation Formats
C. Baykal, “Nonlinear modeling and vibration analysis of horizontal drum type washing machines,” Thesis (M.S.) -- Graduate School of Natural and Applied Sciences. Mechanical Engineering., Middle East Technical University, 2019.