Production of an acetone-butanol-ethanol mixture from Clostridium acetobutylicum and its conversion to high-value biofuels

2015-03-01
Sreekumar, Sanil
Baer, Zachary C.
Pazhamalai, Anbarasan
Günbaş, Emrullah Görkem
Grippo, Adam
Blanch, Harvey W.
Clark, Douglas S.
Toste, F. Dean
Clostridium acetobutylicum is a bacterial species that ferments sugar to a mixture of organic solvents (acetone, butanol and ethanol). This protocol delineates a methodology to combine solventogenic clostridial fermentation and chemical catalysis via extractive fermentation for the production of biofuel blendstocks. Extractive fermentation of C. acetobutylicum is operated in fed-batch mode with a concentrated feed solution (500 grams per liter glucose and 50 grams per liter yeast extract) for 60 h, producing in excess of 40 g of solvents (acetone, butanol and ethanol) between the completely immiscible extractant and aqueous phases of the bioreactor. After distillation of the extractant phase, the acetone, butanol and ethanol mixture is upgraded to long-chain ketones over a palladium-hydrotalcite (Pd-HT) catalyst. This reaction is generally carried out in batch with a high-pressure Q-tube for 20 h at 250 degrees C. Following this protocol enables the production of similar to 0.5 g of high-value biofuel precursors from a 1.7-g portion of fermentation solvents.
NATURE PROTOCOLS

Suggestions

Investigating the malleability of RNA aptamers
İlgü, Müslüm; Lamm, Monica H.; Nilsen-Hamilton, Marit (Elsevier BV, 2013-09-15)
Aptamers are short, single-stranded nucleic acids with structures that frequently change upon ligand binding and are sensitive to the ionic environment. To achieve facile application of aptamers in controlling cellular activities, a better understanding is needed of aptamer ligand binding parameters, structures, intramolecular mobilities and how these structures adapt to different ionic environments with consequent effects on their ligand binding characteristics. Here we discuss the integration of biochemic...
Prediction of hexagonal lattice parameters of various apatites by artificial neural networks
Kockan, Umit; Evis, Zafer (International Union of Crystallography (IUCr), 2010-08-01)
In this study, the hexagonal lattice parameters of apatite compounds, M-10(TO4)(6)X-2, where M is Na+, Ca2+, Ba2+, Cd2+, Pb2+, Sr2+, Mn2+, Zn2+, Eu2+, Nd3+, La3+ or Y3+, T is As+5, Cr+5, P5+, V5+ or Si+4, and X is F-, Cl-, OH- or Br-, were predicted from their ionic radii by artificial neural networks. A multilayer perceptron network was used for training and the best results were obtained with a Bayesian regularization method. Four neurons were used in the hidden layer, utilizing a tangent sigmoid activati...
Genetic polymorphisms of alcohol inducible CYP2E1 in Turkish population
Ulusoy, Gülen; Adalı, Orhan; Department of Biochemistry (2004)
Cytochrome P4502E1 (CYP2E1), the ethanol-inducible isoform of cytochrome P450 superfamily, catalyzes many low molecular weight endogenous and exogenous compounds, including ethanol, acetone, drugs like acetaminophen and chlorzoxazone, and industrial solvents like benzene and styrene, most of which are carcinogenic. Besides, it has a high capacity to produce reactive oxygen species. CYP2E1 is induced by ethanol and isoniazid, as well by some pathophysiological conditions like diabetes and starvation. CYP2E1 ...
Production, purification and characterization of chitosanase from Penicillium spinulosum
Ak, O; Bakir, U; Güray, Nülüfer Tülün (1998-11-01)
A chitosan degrading fungus which had been isolated in our laboratory and identified as Penicillium spinulosum by the International Mycological Institute (England), was used for the production of chitosanase in a salt medium containing Rhizopus cell walls as the sole carbon source. Although chitosanase was produced under all the conditions tested about 1 % cell wall concentration maximized enzyme production. The enzyme was purified 50 fold by using ammonium sulfate precipitation and ion-exchange chromatogra...
Investigation of sugar metabolism in rhizopus oryzae
Büyükkileci, Ali Oğuz; Hamamcı, Haluk; Department of Biotechnology (2007)
Rhizopus oryzae is a filamentous fungus, which can produce high amounts of L(+)-lactic acid and produces ethanol as the main by-product. In an effort to understand the pyruvate branch point of this organism, fermentations under different inoculum and glucose concentrations were carried out. At low inoculum size (1x103 spores ml-1), high amount of lactate (78 g l-1) was produced, whereas high ethanol concentration (37 g l-1) was obtained at high inoculum sizes (1x106 spores ml-1). Decreasing working volume i...
Citation Formats
S. Sreekumar et al., “Production of an acetone-butanol-ethanol mixture from Clostridium acetobutylicum and its conversion to high-value biofuels,” NATURE PROTOCOLS, pp. 0–0, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/44076.