Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Structural Vibration Analysis of Single Walled Carbon Nanotubes with Atom Vacancies
Date
2014-11-01
Author
Dogan, Ibrahim Onur
Yazıcıoğlu, Yiğit
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
262
views
0
downloads
Cite This
Recent investigations in nanotechnology show that carbon nanotubes have significant mechanical, electrical and optical properties. Interactions between those are also promising in both research and industrial fields. Those unique characteristics are mainly due to the atomistic structure of carbon nanotubes. In this paper, the structural effects of vacant atoms on single walled carbon nanotubes are investigated using matrix stiffness method. In order to use this technique, a linkage between structural mechanics and molecular mechanics is established. A code has been developed to construct the single walled carbon nanotubes with the desired chirality, extracting the vacant atoms with the corresponding atomic bonds between the neighbor nodes and calculating the effect of these vacancies on their vibrational properties. In order to investigate the effect of those vacant nodes, large number of simulations has been carried out with randomly positioned vacant atoms. Also, consecutive vacant nodes have been positioned in order to investigate their effect on the structural properties through the length of a single walled carbon nanotubes. Effects of vacancies on Young's modulus have also been investigated. It is concluded that any amount of vacant atoms have substantial effect on modal frequencies and modulus of elasticity. Chirality and the amount/position of the vacancies are the main parameters determining the structural properties.
Subject Keywords
Atom vacancies
,
Nanotube vibration
,
Single walled carbon nanotubes
URI
https://hdl.handle.net/11511/47025
Journal
JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE
DOI
https://doi.org/10.1166/jctn.2014.3635
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
Structural vibration analysis of single walled carbon nanotubes with atom-vacancies
Doğan, İbrahim Onur; Yazıcıoğlu, Yiğit; Department of Mechanical Engineering (2010)
Recent investigations in nanotechnology show that carbon nanotubes (CNT) have one of the most significant mechanical, electrical and optical properties. Interactions between those areas like electrical, optical and mechanical properties are also very promising in both research and industrial fields. Those unique characteristics are built by mainly the atomistic structure of the carbon nanotubes. In this thesis, the effects of vacant atoms on single walled carbon nanotubes (SWCNT) are investigated using matr...
Structural properties of carbon nanorods: Molecular-dynamics simulations
Erkoc, S; Malcıoğlu, Osman Barış (2002-03-01)
The formation of carbon nanorods from various types of carbon nanotubes has been investigated by performing molecular-dynamics computer simulations. Calculations have been realized by using an empirical many-body potential energy function for carbon. It has been found that carbon nanorod formed from carbon nanotubes with different chirality is not stable even at low temperature.
Flexible supercapacitor electrodes with vertically aligned carbon nanotubes grown on aluminum foils
Dogru, Itir Bakis; Durukan, Mete Batuhan; Turel, Onur; Ünalan, Hüsnü Emrah (2016-06-01)
In this work, vertically aligned carbon nanotubes (VACNTs) grown on aluminum foils were used as flexible supercapacitor electrodes. Aluminum foils were used as readily available, cheap and conductive substrates, and VACNTs were grown directly on these foils through chemical vapor deposition (CVD) method. Solution based ultrasonic spray pyrolysis (USP) method was used for the deposition of the CNT catalyst. Direct growth of VACNTs on aluminum foils ruled out both the internal resistance of the supercapacitor...
Evaluating the effects of size and chirality on the mechanical properties of single-walled carbon nanotubes through equivalent-continuum modelling
Zuberi, M. Jibran S.; Esat, Volkan (2016-10-01)
Due to numerous difficulties associated with the experimental investigation of the single-walled carbon nanotubes (SWNTs), computational modelling is considered to be a powerful alternative in order to determine their mechanical properties. In this study, a novel three-dimensional finite element model incorporating a beam element with circular cross section is developed based on equivalent-continuum mechanics approach. The beam elements are used as the replacement of C-C chemical bonds in modelling SWNTs. F...
Titanium coverage on a single-wall carbon nanotube: Molecular dynamics simulations
Oymak, H; Erkoç, Şakir (2003-09-12)
The minimum energy structures of titanium covered finite-length C(8,0) singlewall carbon nanotubes (SWNT) have been investigated. We first parameterized an empirical potential energy function (PEF) for the CTi system. The PEF used in the calculations includes two- and three-body atomic interactions. Then, performing molecular dynamics simulations, we obtained the minimum-energy configurations for titanium covered SWNTs. The reported configurations include low and high coverage of Ti on SWNTs. We saw that on...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
I. O. Dogan and Y. Yazıcıoğlu, “Structural Vibration Analysis of Single Walled Carbon Nanotubes with Atom Vacancies,”
JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE
, pp. 2263–2275, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47025.