Flow characteristics of translating flexible wings at low reynolds numbers

Yazdanpanah, Mahdi
This study experimentally investigates the flow field around surging-translating wings that are started from rest and compares the flow field characteristics with that of surging-revolving wings. Three wings with different level of chordwise flexural stiffness (i.e., highly flexible, moderately flexible and rigid) were studied. The experiments were performed in an octagonal water tank at the Reynold number of 7360 based on the terminal velocity of 0.08 m/s, and the wing chord length of 92 mm. Two-dimensional two-component particle image velocimetry (2D2C PIV) technique was employed to obtain the planar flow fields at the 75% of wingspan position. The PIV measurements reveal a coherent leading edge vortex at the initial phases of the translating motion for all of the wings considered in the study. After approximately two chord lengths of travel, the LEV bursts in the rigid and moderately flexible wings, whereas for the highly flexible wing the LEV preserves its coherency for a longer period of motion. The comparison of flow fields between the translating and the revolving motion kinematics reveals similar behavior of the vortical structures yet the LEV circulation in the translating wings has higher values. The LEV centroid in the revolving cases stays above the leading-edge, while in the translating wings, it always remains at a lower position. The effect of high flexibility results in the retention of LEV closer to the wing surface for both translating and revolving cases.


Flow field characteristics of translating and revolving flexible wings
Yazdanpanah, Mahdi; Hazaveh, Hooman Amiri; Perçin, Mustafa; Van De Meerendonk, Remco; Van Oudheusden, Bas W. (null; 2019-10-20)
This study explores the effects of rotational mechanisms on the characteristics of the leading edge vortex (LEV) by comparing translating and revolving flexible wings that are started from rest. Tomographic particle image velocimetry (tomographic-PIV) technique was employed to acquire three-dimensional flow fields for the revolving wings, while planar flow fields for the case of translating wings were acquired via 2D2C-PIV measurements. The comparison of flow fields between the two motion kinematics reveal...
Flow Structure on Nonslender Delta Wing: Reynolds Number Dependence and Flow Control
Zharfa, Mohammadreza; Ozturk, Ilhan; Yavuz, Mehmet Metin (2016-03-01)
The flow structure over a 35 deg swept delta wing is characterized in a low-speed wind tunnel using techniques of laser-illuminated smoke visualization, laser Doppler anemometry, and surface-pressure measurements. The effects of Reynolds numbers and attack angles on the evaluation of flow patterns are addressed within the broad range of Reynolds number 10(4) < Re < 10(5) and attack angle 3 deg < alpha < 10 deg. In addition, the effect of steady blowing through the leading edges of the wing on flow structure...
Dynamical modelling of the flow over a flapping wing using proper orthogonal decomposition and system identification techniques
DURMAZ, Oğuz; KARACA, H Deniz; ÖZEN, G Deniz; KASNAKOĞLU, COŞKU; Kurtuluş, Dilek Funda (2013-04-01)
A systematic approach for the dynamical modelling of the unsteady flow over a flapping wing is developed, which is based on instantaneous velocity field data of the flow collected using particle image velocimetry (PIV) and computational fluid dynamics (CFD) simulations. The location and orientation of the airfoil is obtained by image processing and the airfoil is filled with proper velocity data. Proper orthogonal decomposition (POD) is applied to these post-processed images to compute POD modes and time co...
Measurement of leading and trailing edge vortex shedding mechanism for flapping airfoil in hover using particle image velocimetry technique
Çekinmez, Aybüge; Alemdaroğlu, Hüseyin Nafiz; Department of Aerospace Engineering (2013)
In this thesis, the vortex shedding formation/mechanism for flapping airfoil making the figure of eight motion in hover is investigated experimentally using Particle Image Velocimetry (PIV) technique and numerically for some parameters determined. For this investigation, a new flapping mechanism is designed and implemented to the existing water tank, where the airfoil is traversed laterally, such that the motion depicts a figure of eight. The traversing system is moved both in x (horizontal) and y (vertical...
Flow visualization around a flapping-wing micro air vehicle in free flight
Del Estal Herrero, Alejandro; Perçin, Mustafa; Karasek, Matej; Van Oudheusden, Bas W. (null; 2018-10-05)
Flow visualizations have been performed on a free flying flapping-wing Micro Air Vehicle (MAV), using a large-scale particle image velocimetry (PIV) approach. The PIV method involves the use of helium filled soap bubbles (HFSB) as tracer particles. HFSB scatter light with much higher intensity than regular seeding particles and comparable to that reflected off the flexible flapping wings. This enables flow field visualization to be achieved also close to the flapping wings, in contrast to previous PIV exper...
Citation Formats
M. Yazdanpanah, “Flow characteristics of translating flexible wings at low reynolds numbers,” Thesis (M.S.) -- Graduate School of Natural and Applied Sciences. Aerospace Engineering., Middle East Technical University, 2019.