Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Flow characteristics of translating flexible wings at low reynolds numbers
Download
index.pdf
Date
2019
Author
Yazdanpanah, Mahdi
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
3
views
0
downloads
This study experimentally investigates the flow field around surging-translating wings that are started from rest and compares the flow field characteristics with that of surging-revolving wings. Three wings with different level of chordwise flexural stiffness (i.e., highly flexible, moderately flexible and rigid) were studied. The experiments were performed in an octagonal water tank at the Reynold number of 7360 based on the terminal velocity of 0.08 m/s, and the wing chord length of 92 mm. Two-dimensional two-component particle image velocimetry (2D2C PIV) technique was employed to obtain the planar flow fields at the 75% of wingspan position. The PIV measurements reveal a coherent leading edge vortex at the initial phases of the translating motion for all of the wings considered in the study. After approximately two chord lengths of travel, the LEV bursts in the rigid and moderately flexible wings, whereas for the highly flexible wing the LEV preserves its coherency for a longer period of motion. The comparison of flow fields between the translating and the revolving motion kinematics reveals similar behavior of the vortical structures yet the LEV circulation in the translating wings has higher values. The LEV centroid in the revolving cases stays above the leading-edge, while in the translating wings, it always remains at a lower position. The effect of high flexibility results in the retention of LEV closer to the wing surface for both translating and revolving cases.
Subject Keywords
Particle image velocimetry.
,
Keywords: Flexible wings
,
Particle image velocimetry
,
Leading edge vortex
,
Circulation
,
Flexural stiffness.
URI
http://etd.lib.metu.edu.tr/upload/12623623/index.pdf
https://hdl.handle.net/11511/44133
Collections
Graduate School of Natural and Applied Sciences, Thesis