Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Zero-day attack detection with deep learning
Download
index.pdf
Date
2019
Author
Çakır, Berna
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
3
views
0
downloads
The rise of the IoT paradigm in the past decade has resulted in an unprecedented number of zero-day attacks launched against IoT systems, which are capable of causing major damages. Deep learning has recently become a popular technique for many learning tasks including intrusion detection, with high potential to detect zero-day attacks in addition to ones with well-known signatures. In this thesis, we analyzed the efficacy of supervised and unsupervised deep learning algorithms for detecting zero-day attacks. We experimented with different neural network architectures including fully connected, recurrent and temporal convolutional models. The proposed deep learning models were proven to be effective in intrusion detection with achievement of 95.3% classification accuracy and 97% f1-score. The models were tested on datasets created using the same environment with the training dataset as well as datasets created in different environments through transfer learning. The tests on the datasets, which were created in different environments showed that deep learning algorithms are capable of detecting some of the attacks with low false positive rates.
Subject Keywords
Intrusion detection systems (Computer security).
,
Keywords: Intrusion Detection
,
Deep Learning
,
Neural Networks.
URI
http://etd.lib.metu.edu.tr/upload/12624014/index.pdf
https://hdl.handle.net/11511/44197
Collections
Graduate School of Natural and Applied Sciences, Thesis