Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Zamansal Evrişimli Ağlarla Saldırı Tespiti: Karşılaştırmalı Bir Analiz
Download
10.31590-ejosat.848784-1474355.pdf
Date
2021-01-01
Author
ÇAKIR, BERNA
Angın, Pelin
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
156
views
69
downloads
Cite This
Son yıllarda Nesnelerin İnterneti paradigmasının hızlı yükselişi ve bu yükselişin yarattığı büyük siber saldırı yüzeyi, otomatik saldırı tespit sistemlerinin önemini arttırmıştır. Özellikle daha önce gözlenmemiş sıfırıncı gün saldırılarının tespitinde klasik imza tabanlı saldırı tespit sistemleri yetersiz kalmaktadır. Bu durum siber güvenlik araştırmacılarını özellikle anomali tespiti için makine öğrenme tabanlı yöntemlere yönlendirmiştir. Literatürde derin öğrenme yöntemlerini bilgisayar ağlarında saldırı tespiti için kullanan birçok yöntem önerilmiş ve yüksek başarım elde etmiştir. Yakın zamanda ilk olarak videolarda aksiyon segmentasyonu için önerilen zamansal evrişimsel ağlar (TCN), zaman serisi içeren öğrenme görevlerinde yüksek başarı elde ettiği halde, bilgisayar ağlarında saldırı tespiti alanındaki etkinlikleri detaylı analiz edilmemiştir. Bu çalışmada TCN’nin saldırı tespiti konusunda başarımı irdelenmiştir. TCN’nin hem ikili sınıflandırma hem de anomali tespiti problemlerindeki başarımı, birçok saldırı tespiti probleminde yüksek başarım elde etmiş tekrarlayan sinir ağları ve tam bağlı sinir ağları yöntemleriyle kıyaslanmıştır. Elde edilen sonuçlar TCN’nin yüksek doğruluklu saldırı tespiti için ümit vaat eden bir yöntem olduğunu göstermektedir.
Subject Keywords
Deep neural networks
,
Temporal convolutional networks
,
Attack detection
,
saldırı tespiti
,
zamansal evrişimli ağlar
,
derin sinir ağları
URI
http://dx.doi.org/10.31590/ejosat.848784
https://hdl.handle.net/11511/97084
Journal
European Journal of Science and Technology
DOI
https://doi.org/10.31590/ejosat.848784
Collections
Department of Computer Engineering, Article
Suggestions
OpenMETU
Core
Zero-day attack detection with deep learning
Çakır, Berna; Angın, Pelin; Department of Computer Engineering (2019)
The rise of the IoT paradigm in the past decade has resulted in an unprecedented number of zero-day attacks launched against IoT systems, which are capable of causing major damages. Deep learning has recently become a popular technique for many learning tasks including intrusion detection, with high potential to detect zero-day attacks in addition to ones with well-known signatures. In this thesis, we analyzed the efficacy of supervised and unsupervised deep learning algorithms for detecting zero-day attack...
It security and privacy guidance tool for iot designs and products
Erhan, Mutl; Günel Kılıç, Banu; Department of Information Systems (2019)
Security and privacy issues in the Internet of Things (IoT) have received much attention in recent years because of the attacks, which have increased both in quantity and diversity. Many studies have been done to make the IoT ecosystem more secure, and these have managed to ease some risks partially by presenting security frameworks or basic standards. However; presented frameworks or standards have not been accepted by all the stakeholders in the IoT ecosystem and have not been able to provide solutions fo...
Malicious code detection: run trace analysis by LSTM
Şırlancı, Melih; Acartürk, Cengiz; Gürkan Balıkçıoğlu, Pınar; Department of Cybersecurity (2021-6)
Malicious software threats and their detection have been gaining importance as a subdomain of information security due to the expansion of ICT applications in daily settings. A major challenge in designing and developing anti-malware systems is the coverage of the detection, particularly the development of dynamic analysis methods that can detect polymorphic and metamorphic malware efficiently. In the present study, we propose a methodological framework for detecting malicious code by analyzing run trace ou...
Static Malware Detection Using Stacked Bi-Directional LSTM
Demirci, Deniz; Acartürk, Cengiz; Department of Cybersecurity (2021-8-19)
The recent proliferation in the use of the Internet and personal computers has made it easier for cybercriminals to expose Internet users to widespread and damaging threats. In order protect the end users against such threats, a security system must be proactive. It needs to detect malicious files or executables before reaching the end-user. To create an efficient and low-cost malware detection mechanism, in the present study, we propose stacked bidirectional long short-term memory (Stacked BiLSTM) based de...
An energy efficient hierarchical approach using multimedia and scalar sensors for emergency services
Kızılkaya, Burak; Ever, Enver; Sustainable Environment and Energy Systems (2019-7)
Recently, environment monitoring and detection systems became more accessible with the help of IoT applications. Furthermore, connecting smart devices makes monitoring applications more accurate and reliable. On the other hand, optimizing the energy requirement of smart sensors especially while transmitting data has always been very important, and there are different applications to create energy efficient IoT systems. Detailed analysis of lifetimes of various types of sensors (survival analysis) has theref...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. ÇAKIR and P. Angın, “Zamansal Evrişimli Ağlarla Saldırı Tespiti: Karşılaştırmalı Bir Analiz,”
European Journal of Science and Technology
, no. 22, pp. 204–211, 2021, Accessed: 00, 2022. [Online]. Available: http://dx.doi.org/10.31590/ejosat.848784.