Multibody simulation of helicopter rotor with structural flexibility

Özturan, Bali İhsan
Most of the multibody simulation tools used for modeling helicopter rotor use beam models of the blade and the rigid rotor hub. Stress recovery in the blade and in the hub are then performed by means of cross-sectional analysis tools or finite element analysis tools. In this study, multibody model of a helicopter main rotor is established using three dimensional flexible models of the blade and the rotor hub, and multibody simulations of the rotor are performed for the hover and the forward flight load cases. The scope of the multibody simulation consists of kinematic modeling of the rotor mechanism, flexible modeling of the hub and the blade, implementation of aerodynamic loads, trim calculations, and time response analysis with the objective of getting time history of dynamic stresses in the flexible parts. The flexible modeling of the rotor blade consists of the implementation of large deformation and centrifugal stiffening geometric nonlinearities.


Structural optimization of composite helicopter rotor blades
Işık, Alperen Ayberk; Kayran, Altan; Department of Aerospace Engineering (2018)
Structural optimization of a helicopter rotor blade with uniform aerodynamic surface and twist at the functional region is performed for weight minimization subject to various constraints relevant to helicopter rotor blades. The genetic algorithm based optimization is performed only for the functional region of the blade. Design variables are taken as the number of unidirectional S-glass layers in the spar cap, position of the spar web with respect to the leading edge, nose mass diameter and position of the...
Farsadi, Touraj; Şener, Özgün; Kayran, Altan (2017-11-09)
Composite pretwisted rotating thin walled beams (TWB) can be used as the structural model for composite helicopter and wind turbine blades for the study of aeroelastic response of the blades. In the present study, semi-analytical solution is performed for the free vibration analysis of uniform and asymmetric composite pretwisted rotating TWB. The approximation of the Green-Lagrange strain tensor is adopted to derive the strain field of the system. The Euler Lagrange governing equations of the dynamic system...
Computational fluid dynamics simulations of ship airwake with a hovering helicopter rotor
Orbay, Ezgi; Sezer Uzol, Nilay (2016-01-01)
Computational Fluid Dynamic simulations of ship airwake are performed together with an actuator disk model for a rotor model hovering over the flight deck. The flow around Simple Frigate Shape 2 (SFS2) is computed in steady-state and unsteady conditions by solving RANS and hybrid RANS/LES equations. The unstructured grid is generated for the ship geometry. Also, an actuator disk is added into the model to investigate downwash effect of rotor on ship airwake and interaction of rotor and ship airwake.
Computational fluid dynamics simulations of ship airwake with a hovering helicopter rotor
Orbay, Ezgi; Uzol, Oğuz; Sezer Uzol, Nilay; Department of Aerospace Engineering (2016)
In this thesis, Computational Fluid Dynamic simulations of ship airwake for a simple ship geometry are performed for the horizontal and inclined deck configurations and also with and without the helicopter rotor over the deck. An actuator disk model is used for the CFD simulations of a rotor model hovering over the flight deck. All of the computations are performed by using a commercial finite volume CFD flow solver. The unstructured tetrahedral grids are generated in the computational domain including ship...
Flow Around Helicopter Blade Tip Sections Using a 3D Stereoscopic Particle Image Velocimeter Part II
Kahveci, Harika Senem (null; 2006-12-01)
The present investigation deals with the detailed aerodynamic flow near a rotating helicopter rotor blade. Three-component velocity measurements using a Stereoscopic Particle Image Velocimetry system reveal the details of the near tip flow at various blade angle-of-attack values. The instantaneous flow in selected planes that are almost normal to the rotor blade tips is measured in a phaselocked manner as observed from the stationary frame. A model helicopter with a two-bladed rotor is utilized for experime...
Citation Formats
B. İ. Özturan, “Multibody simulation of helicopter rotor with structural flexibility,” Thesis (M.S.) -- Graduate School of Natural and Applied Sciences. Aerospace Engineering., Middle East Technical University, 2019.