Flow Around Helicopter Blade Tip Sections Using a 3D Stereoscopic Particle Image Velocimeter Part II

The present investigation deals with the detailed aerodynamic flow near a rotating helicopter rotor blade. Three-component velocity measurements using a Stereoscopic Particle Image Velocimetry system reveal the details of the near tip flow at various blade angle-of-attack values. The instantaneous flow in selected planes that are almost normal to the rotor blade tips is measured in a phaselocked manner as observed from the stationary frame. A model helicopter with a two-bladed rotor is utilized for experiments at a speed of 570 rpm corresponding to a tip velocity of 35.8 m/s (117.5 ft/s) and a tip Reynolds number of 9.6 x 104. Radial motion along the blade is analyzed with 3D PIV. Aerodynamic results obtained near the tip region, and specific issues related to the 3D PIV technique are discussed in detail. The current PIV results effectively show fine details of highly 3D flow fields near rotating machinery components
The Eleventh International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC-11), (26 Şubat - 02 Mart 2006),


Design and manufacturing of a quad tilt rotor unmanned air vehicle
Kahvecioğlu, Ahmet Caner; Alemdaroğlu, Hüseyin Nafiz; Department of Aerospace Engineering (2014)
This thesis presents the design and manufacturing process of a mini class quad tilt rotor unmanned air vehicle (UAV). An optimal design procedure is conducted to satisfy a set of pre-determined requirements, which ensure a competitive aircraft platform performing primarily intelligence, surveillance and reconnaissance missions in UAV market. The aircraft has four electric motors with tilting capability in one axis, which gives it the opportunity to combine the vertical take-off and landing capabilities with...
Structural optimization of composite helicopter rotor blades
Işık, Alperen Ayberk; Kayran, Altan; Department of Aerospace Engineering (2018)
Structural optimization of a helicopter rotor blade with uniform aerodynamic surface and twist at the functional region is performed for weight minimization subject to various constraints relevant to helicopter rotor blades. The genetic algorithm based optimization is performed only for the functional region of the blade. Design variables are taken as the number of unidirectional S-glass layers in the spar cap, position of the spar web with respect to the leading edge, nose mass diameter and position of the...
Modeling and experimental identification of quadrotor aerodynamics
Kaya, D. Derya; Kutay, Ali Türker; Department of Aerospace Engineering (2014)
The aim of this study is to obtain mathematical models for aerodynamic forces and moments of rotors of a quadrotor helicopter, and estimate their parameters through wind tunnel tests for hover, vertical climb, and forward flight conditions. The main factors which determine the movement of a quadrotor UAV are the aerodynamic forces and moments in three axes created by four rotors of the vehicle. Hence, accurate calculation of rotor forces and moments in varying flight conditions are essential to establish a ...
Genetic Algorithm based aerodynamic shape optimization tool for wind turbine blades and its implementation to helicopter blades
Polat, Özge; Sezer-uzol, Nilay; Tuncer, İsmail Hakkı (2014-01-01)
This study presents a methodology first built up for the aerodynamic shape optimization for wind turbine rotors and its modified version for a helicopter rotor in hover. The Genetic Algorithm (GA) coupled with an in-house Blade Element Momentum (BEM) tool is used in the design optimization process. The wind turbine blade optimization studies are performed for maximizing the power production at a given wind speed, rotor speed and rotor diameter, while for the helicopter blade optimization in hover, figure of...
Multibody simulation of helicopter rotor with structural flexibility
Özturan, Bali İhsan; Kayran, Altan; Department of Aerospace Engineering (2019)
Most of the multibody simulation tools used for modeling helicopter rotor use beam models of the blade and the rigid rotor hub. Stress recovery in the blade and in the hub are then performed by means of cross-sectional analysis tools or finite element analysis tools. In this study, multibody model of a helicopter main rotor is established using three dimensional flexible models of the blade and the rotor hub, and multibody simulations of the rotor are performed for the hover and the forward flight load case...
Citation Formats
H. S. Kahveci, “Flow Around Helicopter Blade Tip Sections Using a 3D Stereoscopic Particle Image Velocimeter Part II,” Hawaii, Amerika Birleşik Devletleri, 2006, vol. 2, p. 727, Accessed: 00, 2021. [Online]. Available: https://pennstate.pure.elsevier.com/en/publications/flow-around-helicopter-blade-tip-sections-using-a-3d-stereoscopic.