Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Thermal stress problems ın FGMS
Download
index.pdf
Date
2019
Author
Akdoğan, Esra Nur
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
388
views
125
downloads
Cite This
In this thesis transient temperature distribution, thermal stresses and thermal stress intensity factors (TSIFs) of an infinitely long functionally graded material (FGM) strip containing periodic cracks under thermal shock are studied. Thermal shock is applied by imposing a sudden change in the boundary temperatures. Solution of the present thermoelasticity problem is considered in three successive steps. First the thermal (conduction) problem is solved and the transient temperature distribution is determined. This is followed by the determination of thermal stresses by solving quasi-static elasticity problem. In the last step thermal stress intensity factors (TSIFs) are calculated. In this work, the main focus is the calculation of the transient temperature distribution and the resulting thermal stresses. Since the thermomechanical properties are considered to be functions of a spatial variable, a perturbation technique developed in [1] and [2] is adopted to find an analytical solution of transient heat conduction equation in Laplace domain. Inverse Laplace transformation is achieved by using "residue theorem". After numerically calculating the transient temperature distribution, thermal stresses are computed in the absence of any cracks for the FGM strip subjected to thermal shock. Then, by introducing the thermal stresses as the crack surface tractions in the singular integral equation which is derived in an earlier thesis [3], the TSIFs are determined.
Subject Keywords
Materials
,
Materials Thermal properties.
,
Functionally graded material
,
FGM
,
transient temperature distribution
,
thermal stress
,
periodic cracks
,
thermal stress intensity factor.
URI
http://etd.lib.metu.edu.tr/upload/12623910/index.pdf
https://hdl.handle.net/11511/44312
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Thermal fracture analysis of orthotropic functionally graded materials using an equivalent domain integral approach
Dağ, Serkan (2006-12-01)
A new computational method based on the equivalent domain integral (EDI) is developed for mode I fracture analysis of orthotropic functionally graded materials (FGMs) subjected to thermal stresses. By using the constitutive relations of plane orthotropic thermoelasticity, generalized definition of the J-integral is converted to an equivalent domain integral to calculate the thermal stress intensity factor. In the formulation of the EDI approach, all the required thermomechanical properties are assumed to ha...
Computational Methods for Inclined Cracks in Orthotropic Functionally Graded Materials Under Thermal Stresses
Dağ, Serkan; TOPAL, SERRA (2013-10-03)
This article sets forth two different computational methods developed to evaluate fracture parameters for inclined cracks lying in orthotropic functionally graded materials, that are under the effect of thermal stresses. The first method is based on the J(k)-integral, whereas the second entails the use of the J(1)-integral and the asymptotic displacement fields. The procedures introduced are implemented by means of the finite element method and integrated into a general purpose finite element analysis softw...
Circumferential crack problem for an fgm cylinder under thermal stresses
Dağ, Serkan; Kadıoğlu, Fevzi Suat (1999-01-01)
The main objective of this study is to determine the stress intensity factors associated with a circumferential crack in a thin-walled cylinder subjected to quasi-static thermal loading. The cylinder is assumed to be a functionally graded material In order to make the problem analytically tractable, the thin-walled cylinder is modeled as a layer on an elastic foundation whose thermal and mechanical properties are exponential functions of the thickness coordinate. Hence a plane strain crack problem is obtain...
Thermal stresses in elastic-plastic tubes with temperature-dependent mechanical and thermal properties
Orcan, Y; Eraslan, Ahmet Nedim (2001-11-01)
The thermoelastic-plastic deformations of internal heat-generating tubes are investigated by considering the temperature dependence of the thermal conductivity coefficient, Young's modulus, the coefficient of thermal expansion, and the yield limit of the material. A model describing the elastic-plastic behavior of the tube is developed. The model consists of a system of two second-order ordinary differential equations and a first-order ordinary differential equation involving nonlinear temperature-dependent...
Gradient-based optimization of micro-scale pressurized volumetric receiver geometry and flow rate
Akba, Tufan; Baker, Derek Keıth; Mengüç, M. Pınar (2023-02-01)
This study focuses on the design optimization of a micro-scale pressurized volumetric receiver by changing geometry and flow rate constrained by the volume, outlet air temperature, and outer surface temperature. The pressurized volumetric receiver model is replicated from an existing model, which assumes constant air pressure and neglects the convection loss from the cavity. The existing model is revised from a solver to a design optimizer. The replicated model is restructured using OpenMDAO (Open-source Mu...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. N. Akdoğan, “Thermal stress problems ın FGMS,” Thesis (M.S.) -- Graduate School of Natural and Applied Sciences. Mechanical Engineering., Middle East Technical University, 2019.