Circumferential crack problem for an fgm cylinder under thermal stresses

1999-01-01
The main objective of this study is to determine the stress intensity factors associated with a circumferential crack in a thin-walled cylinder subjected to quasi-static thermal loading. The cylinder is assumed to be a functionally graded material In order to make the problem analytically tractable, the thin-walled cylinder is modeled as a layer on an elastic foundation whose thermal and mechanical properties are exponential functions of the thickness coordinate. Hence a plane strain crack problem is obtained. First temperature and thermal stress distributions for a crack-free layer are determined. Then using these solutions, the crack problem is reduced to a local perturbation problem where the only nonzero loads are the crack surface tractions. Both internal and edge cracks are considered. Stress intensity factors ale computed as functions of crack geometry, material properties, and time.
Journal of Thermal Stresses

Suggestions

Analytical Solution of a Crack Problem in a Radially Graded FGM
Cetin, Suat; Kadıoğlu, Fevzi Suat (2008-09-25)
The objective of this study is to determine stress intensity factors (SIFs) for a crack in a functionally graded layer bonded to a homogeneous substrate. Functionally graded coating contains an edge crack perpendicular to the interface. It is assumed that plane strain conditions prevail and the crack is subjected to mode I loading. By introducing an elastic foundation underneath the homogeneous layer, the plane strain problem under consideration is used as an approximate model for an FGM coating with radial...
Thermal stress problems ın FGMS
Akdoğan, Esra Nur; Kadıoğlu, Fevzi Suat; Department of Mechanical Engineering (2019)
In this thesis transient temperature distribution, thermal stresses and thermal stress intensity factors (TSIFs) of an infinitely long functionally graded material (FGM) strip containing periodic cracks under thermal shock are studied. Thermal shock is applied by imposing a sudden change in the boundary temperatures. Solution of the present thermoelasticity problem is considered in three successive steps. First the thermal (conduction) problem is solved and the transient temperature distribution is determin...
Three dimensional fracture analysis of orthotropic materials
Akgül, Görkem; Dağ, Serkan; Department of Mechanical Engineering (2012)
The main objective of this study is to examine the three-dimensional surface crack problems in orthotropic materials subjected to mechanical or thermal loading. The cracks are modeled and embedded in the orthotropic material by considering semielliptical crack front geometry. In the model special elements are embedded in the crack front region, in this way it is possible to include crack tip singular fields along the crack front. Three-dimensional finite element analyses are conducted to obtain mode I stres...
Fatigue crack growth analysis models for functionally graded materials
Dağ, Serkan; YILDIRIM, BORA (2006-10-18)
The objective of this study is to develop crack growth analysis methods for functionally graded materials (FGMs) subjected to mode I cyclic loading. The study presents finite elements based computational procedures for both two and three dimensional problems to examine fatigue crack growth in functionally graded materials. Developed methods allow the computation of crack length and generation of crack front profile for a graded medium subjected to fluctuating stresses. The results presented for an elliptica...
Computational Methods for Inclined Cracks in Orthotropic Functionally Graded Materials Under Thermal Stresses
Dağ, Serkan; TOPAL, SERRA (2013-10-03)
This article sets forth two different computational methods developed to evaluate fracture parameters for inclined cracks lying in orthotropic functionally graded materials, that are under the effect of thermal stresses. The first method is based on the J(k)-integral, whereas the second entails the use of the J(1)-integral and the asymptotic displacement fields. The procedures introduced are implemented by means of the finite element method and integrated into a general purpose finite element analysis softw...
Citation Formats
S. Dağ and F. S. Kadıoğlu, “Circumferential crack problem for an fgm cylinder under thermal stresses,” Journal of Thermal Stresses, pp. 659–687, 1999, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40798.