Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
The electrochemical stability of lithium metal oxides against metalreduction
Date
1998-06-01
Author
Ceder, Gerbrand
Aydınol, Mehmet Kadri
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
189
views
0
downloads
Cite This
The possibility of metal reduction during the charging of secondary lithium batteries with LixMO2 cathodes is investigated. Loss of active material due to metal reduction can be one of the causes of capacity decay in these batteries after repeated charging. First principles methods are used to calculate the metal reduction potentials in layered LixMO2 compounds where M = Ti, V, Mn, Fe, Co or Ni. It is found that, for several of these compositions, the metal ions may preferably reduce before the lithium ion during charging. (C) 1998 Elsevier Science B.V. All rights reserved.
Subject Keywords
Lithium batteries
,
Intercalation
,
First-principles calculation
URI
https://hdl.handle.net/11511/44444
Journal
Solid State Ionics
DOI
https://doi.org/10.1016/s0167-2738(98)00090-3
Collections
Department of Metallurgical and Materials Engineering, Article
Suggestions
OpenMETU
Core
Application of first principles calculations to the design ofrechargeable Li batteries
Ceder, Gerbrand; Aydınol, Mehmet Kadri; Kohan, Adrian (1997-05-01)
Rechargeable Li batteries consist of an anode, electrolyte, and cathode. The cathode is typically an oxide that intercalates Li al very low chemical potential ensuring a large open-cell voltage for the battery. We show how first-principles pseudopotential calculations can be used to predict the intercalation voltage for these materials. By means of a series of computational experiments on virtual structures, we identify the parameters that are important in determining the intercalation voltage of a compound...
Development of cathode materials for li-ion batteries by sputter deposition
Erdoğan, Erdem Erkin; Aydınol, Mehmet Kadri; Department of Metallurgical and Materials Engineering (2022-2-10)
The electrochemical performance of Li-ion batteries depends mostly on the cathode material. Cobalt has a huge impact on electrochemical properties and is widely used in cathode materials, but due to its toxicity and cost, recent research is focused on reducing the amount of cobalt in cathode materials. In this study, cathode active materials are produced by magnetron sputtering to obtain the optimum amount of cobalt while optimizing the electrochemical properties. Pechini sol-gel method is used to produce p...
Development and characterization of tin based anode materials for Li-Ion batteries
Yılmaz, Emre; Aydınol, Mehmet Kadri; Department of Metallurgical and Materials Engineering (2018)
Li-ion batteries are the most popular type of portable secondary batteries. They generate electrons at anode electrode during discharging process by releasing $Li^+$ ions from anode, in which graphite is used as Li reservoir. Recently, $SiO_2$ and Tin (IV) Oxide materials are investigated as anode materials by researchers, due to their very high theoretical capacity. There are two problems, however, limiting their use which are pulverization and irreversible reaction problems. These problems are, also, the ...
Modification of single walled carbon nanotube thin films for supercapacitor electrodes
Durukan, Mete Batuhan; Ünalan, Hüsnü Emrah; Department of Metallurgical and Materials Engineering (2017)
Electrochemical capacitors, or supercapacitors, attracted a lot of attention in recent years due to their stability under numerous charge-discharge cycles, high charge discharge rates, and high power density when compared to batteries and conventional capacitors. Since their energy density is much lower than batteries, current research on supercapacitors is focused on improving the energy density through the development of novel active materials and innovative design of the electrodes. Carbon nanotubes are ...
Modeling of reaction and degradation mechanisms in lithium-sulfur batteries
Erişen, Nisa; Külah, Görkem; Department of Chemical Engineering (2019)
Lithium-sulfur batteries are promising alternatives for the energy storage systems beyond Li-ion batteries due to their high theoretical specific energy (2567 Wh/kg) in addition to the natural abundancy, non-toxicity and low cost of sulfur. The reaction and degradation mechanisms in a Li-S battery include various electrochemical and precipitation/dissolution reactions of sulfur and polysulfides; however, the exact mechanism is still unclear. In this study, the effect of critical cathode design parameters su...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. Ceder and M. K. Aydınol, “The electrochemical stability of lithium metal oxides against metalreduction,”
Solid State Ionics
, pp. 151–157, 1998, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/44444.