Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Development of cathode materials for li-ion batteries by sputter deposition
Download
Erdem Erkin Erdogan.pdf
Date
2022-2-10
Author
Erdoğan, Erdem Erkin
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
296
views
219
downloads
Cite This
The electrochemical performance of Li-ion batteries depends mostly on the cathode material. Cobalt has a huge impact on electrochemical properties and is widely used in cathode materials, but due to its toxicity and cost, recent research is focused on reducing the amount of cobalt in cathode materials. In this study, cathode active materials are produced by magnetron sputtering to obtain the optimum amount of cobalt while optimizing the electrochemical properties. Pechini sol-gel method is used to produce powders which are then used to produce sputtering targets by cold pressing and sintering. Both targets’ and deposited electrodes’ structural and morphological characterization were done by scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS). The resultant compounds are used to produce battery cathodes via magnetron sputtering. Electrochemical characterization was done by galvanostatic charge-discharge tests and cyclic voltammetry (CV) to focus on discharge capacity and discharge energy of the cathode materials.
Subject Keywords
Li-ion battery
,
Cathode
,
Magnetron sputter deposition
,
Combinatorial
URI
https://hdl.handle.net/11511/96678
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
DEVELOPMENT OF BORIDES/BORATES FOR ENERGY STORAGE DEVICES
Bahtiyar, Doruk; Aydınol, Mehmet Kadri; Department of Metallurgical and Materials Engineering (2022-9)
For many years, materials in the form of metal sulfides, oxides, phosphates, and titanates have been developed as cathode and anode active materials to be used in energy storage devices. Borides and borates, recently, attracted the attention of researchers in this field. In this study, for the development of a new class of materials for energy storage applications, synthesis and characterization of metal (Fe, Mo, Mn, and V) borides and (Mn, and Y)borates were carried out. The obtained materials were tested ...
Synthesis of Graphene-MoS2 composite based anode from oxides and their electrochemical behavior
Sarwar, Saira; Karamat, Shumaila; Saleem Bhatti, Arshad; Aydınol, Mehmet Kadri; Oral, Ahmet; Hassan, Muhammad Umair (2021-10-16)
High energy storage capacity and longer life span make rechargeable Li-ion batteries the first choice in portable electronics. Here, a graphene-MoS2 composite material is investigated as a potential electrode material which enhances the electrochemical storage ability of the Li-ion batteries (LIBs). Graphene-MoS2 composite is synthesized from graphene oxide (GO), molybdenum trioxide and thiourea via hydrothermal route. Formation of graphene-MoS2 composite (molar ratio 1:2) is confirmed by X-ray diffraction ...
Application of first principles calculations to the design ofrechargeable Li batteries
Ceder, Gerbrand; Aydınol, Mehmet Kadri; Kohan, Adrian (1997-05-01)
Rechargeable Li batteries consist of an anode, electrolyte, and cathode. The cathode is typically an oxide that intercalates Li al very low chemical potential ensuring a large open-cell voltage for the battery. We show how first-principles pseudopotential calculations can be used to predict the intercalation voltage for these materials. By means of a series of computational experiments on virtual structures, we identify the parameters that are important in determining the intercalation voltage of a compound...
DEVELOPMENT OF POLYMER MATRIX COMPOSITES WITH TUNABLE DIELECTRIC PROPERTIES
Özkaragöz, Nadire Nazlı; Dericioğlu, Arcan Fehmi; Department of Metallurgical and Materials Engineering (2022-2-08)
Ferroelectric materials are used in different applications because of their superior electrical and dielectric properties. Ferroelectric materials are polarized when an electrical field is applied to the material. This spontaneous polarization continues even if an electrical field is removed. BST (Barium Strontium Titanate) is one of the attractive ferroelectric materials which has a high dielectric constant and low dielectric loss tangent (tanδ). High dielectric constant and low loss tangent are necessary ...
A phase-field model for chemo-mechanical induced fracture in lithium-ion battery electrode particles
MIEHE, C.; Dal, Hüsnü; SCHAENZEL, L. -M.; RAINA, A. (2016-06-01)
Capacity fade in conventional Li-ion battery systems due to chemo-mechanical degradation during charge-discharge cycles is the bottleneck in high-performance battery design. Stresses generated by diffusion-mechanical coupling in Li-ion intercalation and deintercalation cycles, accompanied by swelling and shrinking at finite strains, cause micro-cracks, which finally disturb the electrical conductivity and isolate the electrode particles. This leads to battery capacity fade. As a first attempt towards a reli...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. E. Erdoğan, “Development of cathode materials for li-ion batteries by sputter deposition,” M.S. - Master of Science, Middle East Technical University, 2022.