Adjoint based optimization of supersonic converging diverging nozzle

Yerlikaya, Berkan
The nozzle produces the required thrust for the vehicle in an aircraft or rocket engine by expanding and accelerating the exhaust gas. In this study, the thrust of a supersonic converging-diverging nozzle is optimized by using SU2 software and the adjoint-based optimization tool. During the design optimization procedure, the inlet area, the exit area and the length of the nozzle are kept constant. The main objective is to obtain the maximum thrust within the geometric limitations. In order to maximize the thrust, the exit Mach number and the mass flow rate are selected as the objective functions. They are employed individually and in an equally weighted combination. The highest value in terms of thrust is achieved at the end of the unconstrained multi objective optimization study with low total pressure at the exit of the nozzle. Therefore, a total pressure value is assigned as a constraint to the multi objective optimization. Finally, thrust value is increased with establishing the desired total pressure recovery.


Adjoint-based design optimization of a hypersonic inlet
Başaran, Mehmet; Tuncer, İsmail Hakkı; Department of Aerospace Engineering (2019)
The inlet is one of the most essential parts of a scramjet engine. Its performance heavily affects the overall performance of the engine. The conventional scramjet inlet designs consist of a combination of multiple flat ramps. As the number of ramps increases, the total pressure recovery increases. However, the length and the weight of the engine also increase. In this study, the total pressure recovery of a single-ramp scramjet inlet is improved by aerodynamic shape optimization. In addition, the mass flow...
Parallel optimization of flapping airfoils in a biplane configuration for maximum thrust
Tuncer, İsmail Hakkı (2004-05-27)
Flapping airfoils in a biplane configuration are optimized for a maximum thrust production. A parallel Navier-Stokes solver on overset grids and a gradient based parallel optimization method are employed. The periodic flapping motion of airfoils in a plane configuration is described in a combined pitch and plunge. The pitch and plunge amplitudes and the phase shift between them are optimized for a range of flapping frequencies. It is shown that at low flapping frequencies, flapping airfoils in a biplane con...
Performance prediction of nozzleless solid propellant rocket motors
Özer, Ali Can; Özyörük, Yusuf; Department of Aerospace Engineering (2015)
Integral rocket ramjet (IRR) type propulsion systems have many advantages over conventional solid rocket motors when used in tactical missile systems. Nozzleless boosters are one of the applicable concept choices for the system [1]. During the design and development phase of solid propellant rocket motors, simulation and prediction of behavior of a given motor by numerical tools is important in terms of decreasing the development duration and costs. The present approach includes performance prediction of no...
Passive flow control in liquid-propellant rocket engines with cavitating venturi
Ulaş, Abdullah (Elsevier BV, 2006-04-01)
In a companion liquid rocket engine development project, due to the overall weight constraint of the propulsion system, a cavitating venturi is selected to control the liquid fuel and liquid oxidizer mass flow rates. Two cavitating venturis, one for the fuel and the other for the oxidizer, are designed to deliver the desired mass flow rates for a specified operating inlet pressure, temperature, and inlet cross-sectional area. The converging and diverging angles of the venturis are selected from the literatu...
Transient Thermochemical Erosion Modeling for Solid Propellant Rocket Motor Nozzles Including the Effect of Shape Change and Anisotropy
Onay, Oğuz; Eyi, Sinan (2018-06-25)
In this study, a loosely coupled thermochemical erosion model is developed for the nozzle throat erosion calculations of the solid propellant rocket motors. The flow is assumed to be quasi-steady and the solid domain is updated at each time step of the solid conduction solution. Flow and solid domains are assumed to be axisymmetric. Heterogeneous finite rate surface reactions are used on the wall surface and mass and energy balances are implemented. Effects of anisotropy and the shape change are included to...
Citation Formats
B. Yerlikaya, “Adjoint based optimization of supersonic converging diverging nozzle,” Thesis (M.S.) -- Graduate School of Natural and Applied Sciences. Aerospace Engineering., Middle East Technical University, 2019.