Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Non-linear viscoelasticity for epoxy-based polymers: theoretical modeling and numerical implementation
Download
index.pdf
Date
2019
Author
Koral, Ateş
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
3
views
2
downloads
The present thesis aims at modeling creep behaviour under hydrostatic and uniaxial loadings of a certain silica filled epoxy compound at various temperatures with numerical implementation of algorithms into finite element method. Time dependent behaviour of polymers has been examined and many approaches have been proposed by researchers. Some of the models are inspired from micro-mechanical structure of polymers. These models generally take relaxation of a single entangled chain in a polymer gel matrix upon loading into account. In this thesis, a finite viscoelasticity model, which takes into account volumetric and isochoric creep/relaxation phenomena, is developed for epoxy-based compounds over glass transition temperature. Deformation gradient is multiplicatively split into elastic and inelastic parts and related with associated stretches of the single chain. In this thesis, the non-linear viscous evolution law proposed by Dal is adopted. As a novel aspect, apart from equilibrium bulk modulus parameter, in order to simulate time dependent volumetric creep behaviour of the epoxy compound, a viscous bulk modulus parameter is included in the proposed free energy function. Hence, volumetric effects in viscoelastic behavior is also taken into consideration without needing to split free energy function into volumetric and isochoric parts. Proposed model properly predicts behaviour of epoxy compound above 110 celsius degree in the rubbery state and also in the transition range. It has been demonstrated that the model prediction is quite satisfactory around and above the glass transition temperature, whereas the constitutive behaviour of the epoxy-moulding compounds at temperatures well below the glass transition temperature can not be captured as expected. The model parameters are identified from the experimental results. The algorithmic implementation of the model is carried out in the Eulerian setting in the sense of Dal and Kaliske and the computational performance is demonstrated through representative boundary value problem.
Subject Keywords
Polymers.
,
Viscoelasticity
,
creep
,
stress relaxation
,
inelastic stretch
,
finite element method
,
non-linear viscoelasticity
,
epoxy
,
polymer
,
material modelling,continuum mechanics
,
computational mechanics
,
volumetric effects
,
time dependent
,
free energy function
,
uniaxial
,
hydrostatic.
URI
http://etd.lib.metu.edu.tr/upload/12624606/index.pdf
https://hdl.handle.net/11511/44469
Collections
Graduate School of Natural and Applied Sciences, Thesis