A Domain Decomposition Finite-Element Method for Modeling Electromagnetic Scattering From Rough Sea Surfaces With Emphasis on Near-Forward Scattering

Kuzuoğlu, Mustafa
A high-fidelity full-wave simulator is presented to perform numerical experiments for rough sea scattering problem by considering different polarizations, frequencies, grazing angles, wind speeds, and sea surface spectra. The simulator is based on a novel finite-element domain decomposition (FEDD) method for solving the problem of 2-D electromagnetic scattering over 1-D sea surface. This noniterative method partitions the computational domain into a number of overlapping subdomains and solves each domain individually by employing the locally conformal perfectly matched layer (LC-PML) at the truncation boundaries. LC-PML has a unique feature such that it can be applied to irregular domains on the contrary to standard PML methods, and hence inspired the birth of FEDD. The FEDD method is used at each Monte Carlo realization corresponding to a sample from random rough surfaces and decreases the computational load, especially for electrically large problems. The accuracy and computational efficiency of the method are investigated through several simulations. Using the FEDD method, the statistical behavior of the bistatic radar cross section (RCS) is obtained for both the horizontal and vertical polarizations. A special emphasis is given to forward-scattered RCS and the mean reflection coefficient for sea surface, especially at low grazing angles, and it is shown that the simulator produces results in agreement with the Ament and Miller-Brown approximations, and experimental data, proving the reliability of the simulation approach. The results are also compared with the standard finite-element method and method of moments. Rough sea surfaces are created by using both the Pierson-Moskowitz and Elfouhaily spectra.


A New Approach to Investigation of the Relationship of VLF Signals by Using Longitudinal Analysis Models
Guzel, E.; Yaşar, M.; Kılıç, M. B.; Canyılmaz, M. (Hindawi Limited, 2013)
Longitudinal analysis models are applied to analyze very low frequency (VLF) electromagnetic waves signals. They are useful in realization of nuance of relationship between parameters of concern which change over time. VLF data are so important for the communication and determining the disturbances in the lower ionosphere. In this study, we used a four-day VLF signal data which come from transmitter stations located at two different countries to Elazi. g receiver system. A very important feature of this dat...
A Compact Energy Transducer for Power Generation From Respiration
Beyaz, Mustafa Ilker; Habibiabad, Sahar; Yildiz, Hamza; Goreke, Utku; Azgın, Kıvanç (Institute of Electrical and Electronics Engineers (IEEE), 2019-06-01)
This paper reports a compact magnetic transducer developed for generating electrical power from respiration. The device incorporates a side-drive turbine rotor with embedded permanent magnets and two stators, integrated into a poly(methyl methacrylate) (PMMA) package for actuation. The novelty and advantage of the design lies in almost full use of the available turbine volume together with two stators for both mechanical and electrical transduction, which leads to high rotational speeds and high voltage gen...
Solutions of new potential integral equations using approximate stable diagonalization of the Green's function
Gur, U.M.; Karaosmanoglu, B.; Ergül, Özgür Salih (2017-09-15)
We present efficient and accurate solutions of scattering problems involving dense discretizations with respect to wavelength. Recently developed potential integral equations (PIEs) for stable solutions of low-frequency problems are used to formulate such challenging problems, where the electric current density and magnetic vector potential are defined as unknowns. For solving problems discretized with large numbers of unknowns, we further use an approximate diagonalization of the Green's function within th...
A numerically stable algorithm for scattering from several circular cylinders including metamaterials with different boundary conditions
The analytically obtained algebraic equation systems for the TM/TE-z polarized monochromatic waves scattering from eccentrically layered circular cylinders are ill-conditioned for numerical calculations. Therefore, such ill conditioned systems must be regularized for reliable numerical results. Here, the steps of the regularization of the ill conditioned system obtained for the scattered field from a circular metamaterial cylinder includes three parallel circular cylinders: a dielectric, an impedance and a ...
An Adaptable Interface Circuit With Multistage Energy Extraction for Low-Power Piezoelectric Energy Harvesting MEMS
Chamanian, Salar; Ulusan, Hasan; Koyuncuoglu, Aziz; Muhtaroglu, Ali; Külah, Haluk (Institute of Electrical and Electronics Engineers (IEEE), 2019-03-01)
This paper presents a self-powered interface circuit to extract energy from ambient vibrations for powering up microelectronic devices. The circuit interfaces a piezoelectric energy harvesting micro electro-mechanical systems (MEMS) device to scavenge acoustic energy. Synchronous electric charge extraction (SECE) technique is deployed through the implementation of a novel multistage energy extraction (MSEE) circuit in 180 nm HV CMOS technology to harvest and store energy. The circuit is optimized to operate...
Citation Formats
Ö. ÖZGÜN and M. Kuzuoğlu, “A Domain Decomposition Finite-Element Method for Modeling Electromagnetic Scattering From Rough Sea Surfaces With Emphasis on Near-Forward Scattering,” IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, pp. 335–345, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/44541.