Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Design and implementation of an unregulated DC DC transformer DCX module using LLC resonant converter
Date
2016-08-20
Author
Alemdar, Şahin
Keysan, Ozan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
238
views
0
downloads
Cite This
Traditional high-power centralized front-end DC/DC converter can be replaced with an array of paralleled standardized DC/DC transformer (DCX) modules when load current sharing is accomplished between individual modules. In this study, an LLC resonant converter is proposed as an unregulated DCX module, which has current sharing capability. Current sharing feature is implemented by using the droop current sharing method. A methodical design process is presented for the selection of the resonant tank components. A 500kHz, 100W LLC DCX module having 360-410V input and 12.5-12.1V output is designed and tested. Current sharing performance of the proposed module is demonstrated using a two-module array 200W front-end DC/DC converter.
Subject Keywords
LLC resonant converter
,
DC-DC transformer
,
Current sharing
,
Modular power converter
,
DC-DC power convertors
,
Power transformers
,
Resonant power convertors
URI
https://hdl.handle.net/11511/44562
DOI
https://doi.org/10.1049/cp.2016.0156
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Design and implementation of an unregulated DC-DC transformer module using LLC resonant converter
Alemdar, Öztürk Şahin; Keysan, Ozan; Department of Electrical and Electronics Engineering (2016)
A traditional high-power front-end DC-DC converter can be replaced with an array of paralleled standardized converter modules when modular design is applied. Modular front-end DC-DC converters represent many desirable properties such as expandability of output power capacity, redundancy implementation, simplified thermal management, and reduced design cost. However, in order to benefit from modular design, load current sharing must be accomplished among the paralleled modules. In this thesis, an LLC resonan...
Design and implementation of a voltage source converter based statcom for reactive power compensation and harmonic filtering
Çetin, Alper; Ermiş, Muammer; Department of Electrical and Electronics Engineering (2007)
In this thesis, design and implementation of a distribution-type, voltage source converter (VSC) based static synchronous compensator (D-STATCOM) having the simplest converter and coupling transformer topologies have been carried out. The VSC STATCOM is composed of a +/- 750 kVAr full-bridge VSC employing selective harmonic elimination technique, a low-pass input filter, and a /Y connected coupling transformer for connection to medium voltage bus. The power stage of VSC based STATCOM is composed of water-co...
Design and implementation of a current source converter based statcom for reactive power compensation
Bilgin, Hazım Faruk; Ermiş, Muammer; Department of Electrical and Electronics Engineering (2007)
This research work is devoted to the analysis, design and development of the first medium power Current-Source Converter (CSC) based distribution-type Static Synchronous Compensator (D-STATCOM) with simplest converter topology and coupling transformer connection. The developed CSC-D-STATCOM includes a +/-750kVAr full-bridge CSC employing Selective Harmonic Elimination Method (SHEM), a 250kVAr low-pass input filter at 1kV voltage level, and a Δ/Y connected coupling transformer for connection to medium-voltag...
Design and Implementation of a Current-Source Converter for Use in Industry Applications of D-STATCOM
Bilgin, Hazim Faruk; Ermiş, Muammer (2010-08-01)
This paper deals with the design and implementation of the power stage of a forced-commutated current-source converter (CSC) for use in industry applications of distribution type static synchronous compensator (D-STATCOM). The power semiconductors are switched at 500 Hz according to the switching patterns generated by selective harmonic elimination method for the elimination of the most significant four low-order harmonics. The possibility of using various power semiconductors in CSC is examined both theore...
Design of a Power Plant Emulator for the Dynamic Frequency Stability Studies
Duymaz, Erencan; Pourkeivannour, Siamak; Ceylan, Doğa; ŞAHİN, İLKER; Keysan, Ozan (2018-10-25)
Increasing renewable energy integration to grid requires inertial support to improve frequency stability of the power system. Inertial support of renewable energy systems requires hardware verification in order to test practical limitations and absence of dynamical grid simulators makes verification studies more challenging. In this study, a test rig which is composed of a DC motor, an AC synchronous generator and an external flywheel, is developed in order to provide a platform in which dynamic properties ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ş. Alemdar and O. Keysan, “Design and implementation of an unregulated DC DC transformer DCX module using LLC resonant converter,” 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/44562.