Design and analysis of a mode-switching micro unmanned aerial vehicle

In this study, design and analysis of a mode-switching vertical take-off and landing (VTOL) unmanned aerial vehicle (UAV) with level flight capability is considered. The design of the platform includes both multirotor and fixed-wing (FW) conventional airplane structures; therefore named as VTOL-FW. The aircraft is modeled using aerodynamical principles including post-stall conditions. Trim conditions are obtained by solving constrained optimization problems. Linear analysis techniques are utilized for trim conditions in examining stability and controllability. The proposed method for control includes implementation of multirotor and airplane mode controllers and an algorithm to switch between them in achieving transitions between VTOL and FW flight modes. Thus, VTOL-FW UAV's flight characteristics are expected to be improved by enlarging operational flight envelope through enabling mode-switching, agile maneuvers, and increasing survivability. Simulations and flight tests showed that VTOL-FW UAV demonstrates multirotor and airplane flight characteristics with extra benefits.


Investigation of rotor wake interactions in helicopters using 3d unsteady free vortex wake methodology
Yemenici, Öznur; Uzol, Oğuz; Department of Aerospace Engineering (2010)
This thesis focuses on developing and examining the capabilities of a new in-house aerodynamic analysis tool, AeroSIM+, and investigating rotor-rotor aerodynamic interactions for two helicopters, one behind the other in forward flight. AeroSIM+ is a 3-D unsteady vortex panel method potential flow solver based on a free vortex wake methodology. Validation of the results with the experimental data is performed using the Caradonna-Tung hovering rotor test case. AeroSIM+ code is improved for forward flight cond...
Development of a comprehensive and modular modelling, analysis and simulation tool for helicopters
Yücekayalı, Arda; Kutay, Ali Türker; Department of Aerospace Engineering (2011)
Helicopter flight dynamic, rotor aerodynamic and dynamic analyses activities have been a great dispute since the first helicopters, at both design and test stages. Predicting rotor aerodynamic and dynamic characteristics, helicopter dynamic behavior and trimmed flight conditions is a huge challenge to engineers as it involves the tradeoff between accuracy, fidelity, complexity and computational cost. Flight dynamic activities such as; predicting trim conditions, helicopter dynamic behavior and simulation of...
Aero-structural design and analysis of an unmanned aerial vehicle and its mission adaptive wing
İnsuyu, Erdoğan Tolga; Şahin, Melin; Department of Aerospace Engineering (2010)
This thesis investigates the effects of camber change on the mission adaptive wing of a structurally designed unmanned aerial vehicle (UAV). The commercial computational fluid dynamics (CFD) software ANSYS/FLUENT is employed for the aerodynamic analyses. Several cambered airfoils are compared in terms of their aerodynamic coefficients and the effects of the camber change formed in specific sections of the wing on the spanwise pressure distribution are investigated. The mission adaptive wing is modeled struc...
Tilt duct vertical takeoff and landing uninhabited aerial vehicle concept design study
Armutcuoglu, O; Kavsaoglu, MS; Tekinalp, Ozan (American Institute of Aeronautics and Astronautics (AIAA), 2004-03-01)
A new autonomously controlled tilt-duct vertical takeoff and landing uninhabited aerial vehicle concept is proposed. This design combines the vertical flight capability of a helicopter and forward flight performance of a fixed-wing conventional aircraft. The two main engines and propellers are located inside the tilting ducts attached to the wing tips. There is a third engine-propeller combination located inside the all fuselage for pitch and yaw control during hover and transition. The advantages and disad...
Mathematical model development of the anti torque system of a notar helicopter
Bakır, Hüseyin Murat; Yavrucuk, İlkay; Department of Aerospace Engineering (2008)
The anti-torque mechanism of a NOTAR helicopter is a complex system including vertical tail and pressurized tail boom which provides air ejection used for both circulation control around the boom and creating directed jet air at the end of the boom. This thesis targets the modeling of this mechanism and integrating it to a helicopter simulation model. Flight tests are performed on the MD 600N helicopter to verify the results. Finally, the simulation is compared with flight test data.
Citation Formats
F. Cakici and M. K. Leblebicioğlu, “Design and analysis of a mode-switching micro unmanned aerial vehicle,” INTERNATIONAL JOURNAL OF MICRO AIR VEHICLES, pp. 221–229, 2016, Accessed: 00, 2020. [Online]. Available: