Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Mathematical model development of the anti torque system of a notar helicopter
Download
index.pdf
Date
2008
Author
Bakır, Hüseyin Murat
Metadata
Show full item record
Item Usage Stats
403
views
224
downloads
Cite This
The anti-torque mechanism of a NOTAR helicopter is a complex system including vertical tail and pressurized tail boom which provides air ejection used for both circulation control around the boom and creating directed jet air at the end of the boom. This thesis targets the modeling of this mechanism and integrating it to a helicopter simulation model. Flight tests are performed on the MD 600N helicopter to verify the results. Finally, the simulation is compared with flight test data.
Subject Keywords
Aerospace engineering.
URI
http://etd.lib.metu.edu.tr/upload/2/12610141/index.pdf
https://hdl.handle.net/11511/17895
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Design and analysis of a mode-switching micro unmanned aerial vehicle
Cakici, Ferit; Leblebicioğlu, Mehmet Kemal (SAGE Publications, 2016-12-01)
In this study, design and analysis of a mode-switching vertical take-off and landing (VTOL) unmanned aerial vehicle (UAV) with level flight capability is considered. The design of the platform includes both multirotor and fixed-wing (FW) conventional airplane structures; therefore named as VTOL-FW. The aircraft is modeled using aerodynamical principles including post-stall conditions. Trim conditions are obtained by solving constrained optimization problems. Linear analysis techniques are utilized for trim ...
Accurate position control of a flapping-wing robot enabling free-flight flow visualisation in a wind tunnel
Karasek, Matej; Perçin, Mustafa; Cunis, Torbjorn; van Oudheusden, Bas W.; De Wagter, Christophe; Remes, Bart D. W.; de Croon, Guido C. H. E. (SAGE Publications, 2019-10-02)
Flow visualisations are essential to better understand the unsteady aerodynamics of flapping wing flight. The issues inherent to animal experiments, such as poor controllability and unnatural flapping when tethered, can be avoided by using robotic flyers that promise for a more systematic and repeatable methodology. Here, we present a new flapping-wing micro air vehicle (FWMAV)-specific control approach that, by employing an external motion tracking system, achieved autonomous wind tunnel flight with a maxi...
Simulation of Rapidly Maneuvering Airfoils with Synthetic Jet Actuators
Jee, SolKeun; Lopez Mejia, Omar D.; Moser, Robert D.; Muse, Jonathan A.; Kutay, Ali Türker; Calise, Anthony J. (American Institute of Aeronautics and Astronautics (AIAA), 2013-08-01)
Synthetic jet actuators are investigated for rapidly maneuvering airfoils that are regulated by a closed-loop control system. To support active flow-control simulations performed here, the closed-loop system and vehicle dynamics are coupled with computational fluid dynamics. High-frequency sinusoidal pitching simulations with and without synthetic jet actuation indicate that the current synthetic jet actuators provide bidirectional change in aerodynamic forces during rapid maneuvers whose time scales are of...
Optimization of Flapping Motion Parameters for Two Airfoils in a Biplane Configuration
Kaya, Mustafa; Tuncer, İsmail Hakkı; Jones, Kevin D.; Platzer, Max F. (American Institute of Aeronautics and Astronautics (AIAA), 2009-03-01)
Flapping motion parameters of airfoils in a biplane configuration are optimized for maximum thrust and/or propulsive efficiency. Unsteady, viscous flowfields over airfoils flapping in a combined plunge and pitch are computed with a parallel flow solver on moving and deforming overset grids. The amplitudes of the sinusoidal pitch and plunge motions and the phase shift between them are optimized for a range of flapping frequencies. A gradient-based optimization algorithm is implemented in a parallel computing...
Nonsinusoidal path optimization of a flapping airfoil
Kaya, Mustafa; Tuncer, İsmail Hakkı (American Institute of Aeronautics and Astronautics (AIAA), 2007-08-01)
The path of a flapping airfoil undergoing a combined, nonsinusoidal pitching and plunging motion is optimized for maximum thrust and/or propulsive efficiency. The nonsinusoidal, periodic flapping motion is described using nonuniform rational B splines. A gradient based algorithm is then employed for the optimization of the nonuniform rational B-spline parameters. Unsteady, low speed laminar flows are computed using a Navier-Stokes solver in a parallel computing environment. The numerical evaluation of the g...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. M. Bakır, “Mathematical model development of the anti torque system of a notar helicopter,” M.S. - Master of Science, Middle East Technical University, 2008.